Skip to main content
Log in

Structural design and physicochemical specifications exploring of the new di-cationic ionic liquids (D-ILs) composed of para-xylyl linked N-Methylimidazolium cation and various anions: a full M06–2X computational study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Some of the quantum chemical computable characteristics of the new designed di-cationic ILs ([X][Y1–6]2) (X = [p − C6H4(CH2MIM)2]2+ and Y1–6 = CH3CO2, CF3CO2, BF4, ClO4, CF3SO3 and PF6) based on para-xylyl linked bis-(3-methyl-1-imidazolium) cation and various anions were investigated using density functional theory (DFT) at M062X/aug-ccpvdz level of theory. The geometrical characteristics, electrostatic potential maps, dispersion including interaction energies, natural charge and charge transfer (CT), topological specifications, reduced gradient density (RGD) plots, cathodic (VCL) and anodic (VAL) limits of potentials as well as electrochemical windows (ECW) were explored and evaluated. The obtained consequences for dispersion corrected interaction energies which are the consequences of the intermolecular hydrogen bonding and electrostatic interactions (− 212.06 to − 250.22 kcal mol−1) showed the following order [X][Y1]2 > [X][Y2]2 > [X][Y3]2 > [X][Y4]2 > [X][Y5]2 > [X][Y6]2. The electrostatic essence for the C–H⋅⋅⋅O and C–H⋅⋅⋅F hydrogen bonds in [X][Y1–6]2 D-ILs is verified by the consequences of the electron density analysis calculations. The following order for ECWs of the designed di-cationic ILs (D-ILs) was obtained: [X][CH3CO2]2 < [X][CF3SO3]2 < [X][CF3CO2]2 ≅ [X][BF4]2 ≅ [X][ClO4]2 ≅ [X][PF6]2. For D-ILs composed of CF3CO2, BF4, ClO4 and PF6 anions, it is predicted that the anodic stability limit in aqueous environment is controlled by the di-cation constructing part of the D-ILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Priyanka VP, Gardas RL (2020) Mono and di-cationic ionic liquids based aqueous biphasic systems for the extraction of diclofenac sodium. Sep Purif Technol 234:116048

    Article  CAS  Google Scholar 

  2. Roohi H, Fallah Ghasemi Gildeh S, Mehrdad M, Ghauri K (2020) Exploring the physicochemical properties of para-xylyl linked DBU-based di-cationic ionic liquids consist of various anions: a GD3–M06–2X study. J Mole Liquid 310:113060

    Article  CAS  Google Scholar 

  3. Roohi H, Fallah Ghasemi Gildeh S, Ghauri K, Fathei P (2020) Physicochemical properties of the imidazolium-based di-cationic ionic liquids (DILs) composed of ethylene π-spacer by changing the anions: a quantum chemical approach. Ionics 26:1963

    Article  CAS  Google Scholar 

  4. Vélez JF, Vázquez-Santos MB, Amarilla JM, Herradón B, Mann E, del Río C, Morales E (2019) Geminalpyrrolidinium and piperidinium di-cationic ionic liquid electrolytes Synthesis characterization and cell performance in LiMn2O4 rechargeable lithium cells. J Power Sourc 439:227098

    Article  Google Scholar 

  5. Alavi SM, Yeganegi S (2018) DFT study of structures and hydrogen bonds of imidazolium-based halogen-free boron containing di-cationic ionic liquids. J Mol Liq 256:330

    Article  CAS  Google Scholar 

  6. Haddad B, Paolone A, Villemin D, Lohier J-F, Drai M, Bresson S, Abbas O, Belarbi E (2018) Para-Xylyl bis-1-methylimidazolium bis(trifluoromethanesulfonyl)imide: synthesis, crystal structure, thermal stability, Vibrational Studies. J Mol Liq 260:391

    Article  CAS  Google Scholar 

  7. Masri AN, Mutalib Mi A, Leveque J-M (2016) A review on di-cationic ionic liquids: classification and application. Ind Eng Manag 5:197–203

    Google Scholar 

  8. Rodrigues M, Russo L, Aguiló E, Rodríguez L, Ott I, Pérez-García L (2016) Au (I) N-heterocyclic carbenes from bis-imidazolium amphiphiles: synthesis, cytotoxicity and incorporation onto gold nanoparticles. RSC Adv 6:2202

    Article  CAS  Google Scholar 

  9. Azizi A, Shirdel NF (2016) Task specific di-cationic acidic ionic liquids catalyzed efficient and rapid synthesis of benzoxanthenones derivatives. J Mol Liq 222:783

    Article  CAS  Google Scholar 

  10. Mahrova M, Pagano F, Pejakovic V, Valea A, Kalin M, Igartua A, Tojoet E (2015) Pyridinium based di-cationic ionic liquids as base lubricants or lubricant additives. Tribol Int 82:245

    Article  CAS  Google Scholar 

  11. Farmanzadeh D, Soltanabadi A, Yeganegi S (2013) DFT study of the geometrical and electronic structures of geminal di-cationic ionic liquids 1,3-bis[3-methylimidazolium-1-yl] hexane halides. J Chin Chem Soc 60:551

    Article  CAS  Google Scholar 

  12. Shirota H, Mandai T, Fukazawa H, Kato T (2011) Comparison between di-cationic and mono-cationic ionic liquids: liquid density, thermal properties, surface tension, and shear viscosity. J Chem Eng Data 56:2453

    Article  CAS  Google Scholar 

  13. Liang JH, Ren XQ, Wang JT, Jinag M, Li ZJ (2010) Preparation of biodiesel by transesterification from cottonseed oil using the basic di-cation ionic liquids as catalysts. J Fuel Chem Technol 38:275

    Article  CAS  Google Scholar 

  14. Payagala T, Huang J, Breitbach ZS, Sharma PS, Armstrong DW (2007) Unsymmetrical di-cationic ionic liquids: manipulation of physicochemical properties using specific structural architectures. Chem Mater 19:5848

    Article  CAS  Google Scholar 

  15. Anderson JL, Ding R, Ellern A, Armstrong DW (2005) Structure and properties of high stability geminal di-cationic ionic liquids. J Am Chem Soc 127:593

    Article  CAS  PubMed  Google Scholar 

  16. Moumene T, Belarbi EH, Haddad B, Villemin D, Abbas O, Khelifa B, Bresson S (2014) Vibrational spectroscopic study of ionic liquids: comparison between mono-cationic and di-cationic imidazolium ionic liquids. J Mol Struc 1065–1066:86

    Article  Google Scholar 

  17. Talebi M, Patil RA, Armstrong DW (2018) Physicochemical properties of branched-chain di-cationic ionic liquids. J Mol Liq 256:247

    Article  CAS  Google Scholar 

  18. Mei X, Yue Z, Ma Q, Dunya H, Mandal BK (2018) Synthesis and electrochemical properties of new di-cationic ionic liquids. J Mol Liq 272:1001

    Article  CAS  Google Scholar 

  19. Boumediene M, Haddad B, Paolone A, Drai M, Villemin D, Rahmouni M, Bresson S, Abbas O (2019) Synthesis, thermal stability, vibrational spectra and conformational studies of novel di-cationic meta-xylyl linked bis-1-methylimidazolium ionic liquids. J Mol Struct 1186:68

    Article  CAS  Google Scholar 

  20. Zhang H, Li M, Yang B (2018) Design, Synthesis, and analysis of thermo-physical properties for imidazolium-based geminal di-cationic ionic liquids. J Phys Chem C 122:2467

    Article  CAS  Google Scholar 

  21. Patil RA, Talebi M, Xu C, Bhawal SS, Armstrong DW (2016) Synthesis of thermally stable geminal di-cationic ionic liquids and related ionic compounds: an examination of physicochemical properties by structural modification. Chem Mater 28:4315

    Article  CAS  Google Scholar 

  22. Zekri N, Fareghi-Alamdari R, Khodarahmi Z (2016) Functionalized di-cationic ionic liquids: green and efficient alternatives for catalysts in phthalate plasticizers preparation. J Chem Sci 128:1277

    Article  CAS  Google Scholar 

  23. Chang JC, Ho WY, Sun IW, Chou YK, Hsieh HH (2011) Synthesis and properties of new tetrachlorocobaltate (II) and tetrachloromanganate (II) anion salts with di-cationic counter-ions. Polyhedron 30:497

    Article  CAS  Google Scholar 

  24. Chang JC, Ho WY, Sun IW, Tung YL, Tsui MC (2010) Synthesis and characterization of di-cationic ionic liquids that contain both hydrophilic and hydrophobic anions. Tetrahedron Lett 66:6150

    Article  CAS  Google Scholar 

  25. Chang JC, Ho WY, Sun IW, Chou YK, Hsieh HH (2010) Synthesis and properties of new (μ-oxo) bis [trichloroferrate (III)] di-anion salts incorporated with di-cationic moiety. Polyhedron 29:2976

    Article  CAS  Google Scholar 

  26. Zeng Z, Phillips BS, Xiao J-C, Shreeve JM (2008) Polyfluoroalkyl, polyethylene glycol, 1,4-bismethylenebenzene, or 1,4-bismethylene-2,3,5,6-tetrafluorobenzene bridged functionalized di-cationic ionic liquids: synthesis and properties as high temperature lubricants. Chem Mater 20:2719

    Article  CAS  Google Scholar 

  27. Zhang ZX, Zhou HY, Yang L, Tachibana K, Kamijima K (2008) Asymmetrical di-cationic ionic liquids based on both imidazolium and aliphatic ammonium as potential electrolyte additives applied to lithium secondary batteries. Electrochim Acta 53:4833

    Article  CAS  Google Scholar 

  28. Ding YS, Zha M, Zhang J, Wang SS (2007) Synthesis, characterization and properties of geminal imidazolium ionic liquids. Colloids Surf A Physicochem Eng Asp 298:201

    Article  CAS  Google Scholar 

  29. Zhang Z, Yang L, Luo S, Tian M, Tachibana K (2007) Ionic liquids based on aliphatic tetra alkyl ammonium di-cations and TFSI anion as potential electrolytes. J Power Sourc 167:217

    Article  CAS  Google Scholar 

  30. Talaei R, Khalili B, Mokhtary M (2020) Modulation of opto-electronic properties of the functionalized hexagonal boron nitride nano-sheets with tunable aryl alkyl ionic liquids (TAAILs): defect based analysis. J Mole Liq 304:112696

    Article  CAS  Google Scholar 

  31. Khalili B, Rasoulian M, Ghauri K (2020) First time investigation of the substitution effect at anion part of the ILs on their physicochemical properties using [DMT][4-XPhSO3],(X = NH2, OH, H, F, Br, CHO, CF3, CN and NO2) as a model ILs: a systematic DFT study. J Mol Struct 1201:127171

    Article  CAS  Google Scholar 

  32. Khalili B, Rimaz M (2017) An investigation on the physicochemical properties of the nanostructured [(4-X) PMAT][N(CN)2] ion pairs as energetic and tunable aryl alkyl amino tetrazolium based ionic liquids. J Mol Struct 1137:530

    Article  CAS  Google Scholar 

  33. Khalili B, Rimaz M (2017) Does interaction between an amino acid anion and methyl imidazolium cation lead to a nanostructured ion pairs of [Mim][AA] as an ionic liquid? J Mol Liq 229:267

    Article  CAS  Google Scholar 

  34. Roohi H, Khyrkhah S (2013) Ion-pairs formed in [Mim+][N(CN)2] ionic liquid: structures, binding energies NMR SSCCs, volumetric, thermodynamic and topological properties. J Mole Liq 177:119

    Article  CAS  Google Scholar 

  35. Sun H, Zhang D, Liu C, Zhang C (2009) Geometrical and electronic structures of the di-cation and ion pair in the germinal di-cationic ionic liquid 1,3-bis[3-methylimidazolium-yl] propane bromide. J Mol Struct (Thoechem) 900:37

    Article  CAS  Google Scholar 

  36. Roohi H, Ghauri K (2016) Influence of various anions and cations on electrochemical and physicochemical properties of the nanostructured tunable aryl alkyl ionic liquids (TAAILs): a DFT M06–2X study. Thermochim Acta 639:20

    Article  CAS  Google Scholar 

  37. Roohi H, Salehi R (2011) Molecular interactions in methyl imidazolium tetra fluoroborate ionic liquid ([Mim+][BF4]): structures, binding energies, topological properties and NMR one-and two bonds spin–spin coupling constants. J Mol Liq 161(2):63

    Article  CAS  Google Scholar 

  38. Zhao Y, Truhlar DG, Theor (2008) The M06 suite of density functional for main group, thermochemistry thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functional and systematic testing of four M06-class functional and 12 other functional. Chem Acc 120:215

    Article  CAS  Google Scholar 

  39. Zhao Y, Truhlar DG (2006) Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. J Phys Chem 110:5121

    Article  CAS  Google Scholar 

  40. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  41. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta Jr JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09, revision A.02, Gaussian 09 Citation, Gaussian, Inc, Wallingford CT

  43. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1995) Department 995 of chemistry. University of California-Irvine, Irvine, CA

    Google Scholar 

  44. Bader R (1990) Atoms in molecules: a quantum theory, vol 997. Oxford University Press, New York

    Google Scholar 

  45. Biegler-König F, Schönbohm J, Bayles D (2001) J Comput Chem 998(22):545

  46. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lu T, Chen F (2012) Multiwfn: a multifunctional wave function analyzer. J Comput Chem 33:580

    Article  PubMed  Google Scholar 

  49. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33

    Article  CAS  PubMed  Google Scholar 

  50. Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Book  Google Scholar 

  51. Haddad B, Paolone A, Drai M, Boumediene M, Villemin D, Belarbi E, Rahmouni M, Bresson S, Abbas O (2019) Para-xylyl linked bis-imidazolium ionic liquids: a study of the conformers of the cation and of the anion-cation hydrogen bonding. J Mol Struct 1175:175

    Article  CAS  Google Scholar 

  52. Schulz T, Ahrens S, Meyer D, Allolio C, Peritz A, Strassner T (2011) Electronic effects of para-substitution on the melting points of TAAILs. Chem Asian J 6:863

    Article  CAS  PubMed  Google Scholar 

  53. Pitawala J, Matic A, Martinelli A, Jacobsson P, Koch V, Croce F (2009) Thermal properties and ionic conductivity of imidazoliumbis(trifluoromethanesulfonyl)imide di-cationic ionic liquids. J Phys Chem B 113:10607

    Article  CAS  PubMed  Google Scholar 

  54. Izgorodina EI, Bernard UL, MacFarlane DR (2009) Ion-pair binding energies of ionic liquids: can DFT compete with ab initio-based methods? J Phys Chem A 113:7064

    Article  CAS  PubMed  Google Scholar 

  55. Ghatee MH, Moosavi F, Zolghadr AR, Jahromi R (2010) Critical-point temperature of ionic liquids from surface tension at liquid−vapor equilibrium and the correlation with the interaction energy. Ind Eng Chem Res 49:12696

    Article  CAS  Google Scholar 

  56. Reed AE, Curtiss LA, Weinhold F (1998) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899

    Article  Google Scholar 

  57. Koch VR, Dominey LA, Nanjundiah C (1996) The intrinsic anodic stability of several anions comprising solvent-free ionic liquids. J Electrochem Soc 143:798

    Article  CAS  Google Scholar 

  58. Kroon MC, Buijs W, Peters CJ, Witkamp GJ (2006) Decomposition of ionic liquids in electrochemical processing. J Green Chem 8:241

    Article  CAS  Google Scholar 

  59. Buijs WGJ, Witkamp MC (2012) Kroon, Correlation between quantum chemically calculated lumo energies and the electrochemical window of ionic liquids with reduction-resistant anions. Int J Electrochem 589050:1

    Article  Google Scholar 

  60. Wu P, Chaudret R, Hu X, Yang W (2013) Noncovalent interaction analysis in fluctuating environments. J Chem Theory Comput 9:2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ong SP, Andreussi O, Wu Y, Marzari N, Ceder G (2011) Electrochemical windows of room-temperature ionic liquids from molecular dynamics and density functional theory calculations. Chem Mater 23:2979

    Article  CAS  Google Scholar 

  62. Ue M, Murakami A, Nakamurab S (2002) A convenient method to estimate ion size for electrolyte materials design. J Electrochem Soc 149:1572

    Article  Google Scholar 

  63. Kazemiabnavi S, Zhang Z, Thornton K, Banerjee S (2016) Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries. J Phys Chem B 120:5691

    Article  CAS  PubMed  Google Scholar 

  64. Fallah Ghasemi Gildeh S, Roohi H, Mehrdad M, Rad-Moghadam K, Ghauri K (2020) Experimental and theoretical probing of the physicochemical properties of ionic liquids composed of [Bn-DBU] cation and various anions. J Mol Struct 1202:127226

    Article  Google Scholar 

  65. Daily LA, Miller KM (2013) Correlating structure with thermal properties for a series of 1-alkyl-4-methyl-1,2,4-triazolium ionic liquids. J Org Chem 78:4196

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support of this work from the Research Council of the University of Guilan is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Khalili.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, B., Mamaghani, M. & Bazdid-Vahdati, N. Structural design and physicochemical specifications exploring of the new di-cationic ionic liquids (D-ILs) composed of para-xylyl linked N-Methylimidazolium cation and various anions: a full M06–2X computational study. Theor Chem Acc 141, 3 (2022). https://doi.org/10.1007/s00214-021-02862-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02862-6

Keywords

Navigation