Skip to main content
Log in

Study on graphene-like monolayer ZnS1−xOx: structural and optoelectronic properties

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In the present work, we have investigated the structural, electronic and optical features of ZnS1−xOx graphene-like monolayer's for different x values compositions (0, 0.25, 0.5, 0.75 and 1) using the modified Becke–Johnson approach calculations within the framework of the density functional theory (DFT). The lattice parameter has been determined and found to deviate from Vegard’s law for the ZnS1−xOx monolayer. The electronic band structure has been explored where the band gap energy has been found to be non-zero and direct in nature. This makes our material useful for optoelectronic devices. Besides, the optical spectra of the real and imaginary parts of the dielectric function along with the refractive index have all been addressed and found to be in good accordance with previous works reported for ZnS and ZnO monolayer's.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Science 306(5696):666–669

    Article  CAS  Google Scholar 

  2. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453

    Article  CAS  Google Scholar 

  3. Jijun Z, Hongsheng L, Zhiming Y, Ruge Q, Si Z, Yangyang W, Cheng CL, Hongxia Z, Nannan H, Jing L, Yugui Y, Kehui W (2016) Rise of silicene: a competitive 2D material. Prog Mater Sci 83:24–151

    Article  Google Scholar 

  4. Patrick V, Paola DP, Claudio Q, Jose A, Emmanouil F, Maria CA, Andrea R, Bénédicte E, Guy LL (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108(1–5):155501. https://doi.org/10.1103/PhysRevLett.108.155501

    Article  CAS  Google Scholar 

  5. Vogt P (2018) Silicene, germanene and other group IV 2D materials. Beilstein J Nanotechnol 9:2665–2667. https://doi.org/10.3762/bjnano.9.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Acun A, Zhang L, Bampoulis P, Farmanbar M, van Houselt A, Rudenko AN, Lingenfelder M, Brocks G, Poelsema B, Katsnelson MI, Zandvliet HJW (2015) Germanene: the germanium analogue of grapheme. J Phys Condens Matter 27:443002

    Article  CAS  Google Scholar 

  7. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4):2898–2926. https://doi.org/10.1021/nn400280c

    Article  CAS  PubMed  Google Scholar 

  8. Tran V, Soklaski R, Liang Y, Yang L (2014) Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B 89(23):235319. https://doi.org/10.1103/PhysRevB.89.235319

    Article  CAS  Google Scholar 

  9. Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9(5):372–377. https://doi.org/10.1038/NNANO.2014.35

    Article  CAS  PubMed  Google Scholar 

  10. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6(3):147–150. https://doi.org/10.1038/NNANO.2010.279

    Article  CAS  PubMed  Google Scholar 

  11. Rodin AS, Carvalho A, Castro Neto AH (2014) Strain-induced gap modification in black phosphorus. Phys Rev Lett 112(17):176801

    Article  CAS  Google Scholar 

  12. Peng X, Wei Q, Copple A (2014) Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys Rev B 90(8):085402. https://doi.org/10.1103/PhysRevB.90.085402

    Article  CAS  Google Scholar 

  13. Fei R, Yang L (2014) Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett 14(5):2884. https://doi.org/10.1021/nl500935z

    Article  CAS  PubMed  Google Scholar 

  14. Buscema M, Groenendijk DJ, Blanter SI, Steele GA, van der Zant HSJ, Castellanos-Gomez A (2014) Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. https://doi.org/10.1021/nl5008085

    Article  PubMed  Google Scholar 

  15. Qiao J, Kong X, Hu Z-X, Yang F., Ji W (2014) Nat Commun 5

  16. Reich ES (2014) Nature 506(7486):19–19

    Article  Google Scholar 

  17. Nabetani Y, Okuno T, Aoki K, Kato T, Matsumoto T, Hirai T (2006) Epitaxial growth and optical investigations of ZnTeO alloys. Phys Status Solidi A 203(11):2653–2657

    Article  CAS  Google Scholar 

  18. Nabetani Y, Okuno T, Aoki K, Kato T, Matsumoto T, Hirai T (2006) Photoluminescence properties of ZnTeO and ZnSeO alloys with dilute O concentrations. Phys Status Solidi C 3(4):1078–1081

    Article  CAS  Google Scholar 

  19. Wang W, Bowen W, Spanninga S, Lin S, Phillips J (2009) Optical characteristics of ZnTeO thin films synthesized by pulsed laser deposition and molecular beam epitaxy. J Electron Mater 38(1):119–125

    Article  CAS  Google Scholar 

  20. Lin AS, Wang W, Phillips JD (2009) Model for intermediate band solar cells incorporating carrier transport and recombination. J Appl Phys 105:064512

    Article  Google Scholar 

  21. Wang W, Lin AS, Phillips JD, Metzger WK (2009) Generation and recombination rates at ZnTe: O intermediate band states. Appl Phys Lett 95(26):261107

    Article  Google Scholar 

  22. Tanaka T, Yu KM, Levander AX, Dubon OD, Reichertz LA, Lopez N, Nishio M, Walukiewicz W (2011) Demonstration of ZnTe1-xOx intermediate band solar cell. Jpn J Appl Phys 50:082304

    Google Scholar 

  23. He Y, Wang L, Zhang L, Li M, Shang X, Fang Y, Chen C (2012) Solubility limits and phase structures in epitaxial ZnOS alloy films grown by pulsed laser deposition. J Alloy Compd 534:81–85

    Article  CAS  Google Scholar 

  24. Bellouche A, Gueddim A, Zerroug S, Bouarissa N (2016) Elastic properties and optical spectra of ZnS1-xOx dilute semiconductor alloys. Optik 127:11374–11378

    Article  CAS  Google Scholar 

  25. Gueddim A, Zerroug S, Bouarissa N (2013) Optical characteristics of ZnTe1-xOx alloys from first-principles calculations. J Luminesc 135:243–247

    Article  CAS  Google Scholar 

  26. Zerroug S, Gueddim A, Ajmal Khan M, Bouarissa N (2013) Ab initio study of structural parameters and optical properties of ZnTe1−xOx. Superlattices Microstruct 53:155–162

    Article  CAS  Google Scholar 

  27. Becke AD, Johnson ER (2006) A simple effective potential for exchange. J Chem Phys 124:221101

    Article  Google Scholar 

  28. Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with semilocal exchange-correlation potential. Phys Rev Lett 102:226401(1–4)

    Google Scholar 

  29. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–871

    Article  Google Scholar 

  30. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2002) WIEN2K + an augmented plane wave + local orbitals program for calculating crystal properties. Techn. Universitat, Wien, Austria, 2001, ISBN-3-9501031-1- 2

  31. Wu Z, Cohen RE (2006) More accurate generalized gradient approximation for solids. Phys Rev B 73:235116(1–6)

    Google Scholar 

  32. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Nat Acad Sci USA 30:244–247

    Article  CAS  Google Scholar 

  33. Drissi N, Gueddim A, Bouarissa N (2020) First-principles study of rocksalt MgxZn1-xO: band structure and optical spectra. Philos Mag, pp 1–16

  34. Khan MA, Gueddim A, Bouarissa N, Algarni H, Ziani H (2020) Band parameters for Zn 1-xMoxTe studied by means of spin-polarized first-principles calculations. J Computat Electron 19(1):38–46

    Article  Google Scholar 

  35. Gueddim A, Zerroug S, Bouarissa N (2015) Composition dependence of the optical properties and band structure of the zinc-blende ZnS1-xOx: a first principles study. Philos Mag 95(24):2627–2638

    Article  CAS  Google Scholar 

  36. Gueddim A, Madjet ME, Zerroug S, Bouarissa N (2016) First-principles investigations of electronic properties and optical spectra of Cd1−xMnxTe dilute magnetic semiconductors. Opt Quant Electron 48:551

    Article  Google Scholar 

  37. Gueddim A, Zerroug S, Bouarissa N, Fakroun N (2017) Study of the elastic properties and wave velocities of rocksalt Mg1−xFexO: ab initio calculations. Chin J Phys 55(4):1423–1431

    Article  CAS  Google Scholar 

  38. Zerroug S, Gueddim A, Bouarissa N (2016) Composition dependence of fundamental properties of Cd1−xCoxTe magnetic semiconductor alloys. J Comput Electron 15:473–478

    Article  CAS  Google Scholar 

  39. Safari M, Izadi Z, Jalilian J, Ahmad I, Jalali-Asadabadi S (2017) Metal mono-chalcogenides ZnX and CdX (X=S, Se and Te) monolayers: Chemical bond and optical interband transitions by first principles calculations. Phys Lett A 381(6):663–670

    Article  CAS  Google Scholar 

  40. Tu ZC (2010) First-principles study on physical properties of a single ZnO monolayer with graphene-like structure. J Comput Theor Nanosci 7:1182–1186

    Article  CAS  Google Scholar 

  41. Tang ZK, Wong GKL, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y (1998) Appl Phys Lett 72(25):3270–3272

    Article  CAS  Google Scholar 

  42. Bylsma RB, Becker WM, Kossut J, Debska U, Yoder-Short D (1986) Phys Rev B 33(12):8207–8215

    Article  CAS  Google Scholar 

  43. Adachi S (2005) Properties of group IV III-V and II-VI semiconductors. Wiley, Chichester

    Book  Google Scholar 

  44. Ozaki S, Adachi S (1994) Optical constants of ZnSxSe1-x ternary alloys. J Appl Phys 75:7470–7475

    Article  CAS  Google Scholar 

  45. Suzuki KI, Adachi S (1998) Optical constants of CdxZn1-xSe ternary alloys. J Appl Phys 83:1018–1022

    Article  CAS  Google Scholar 

  46. Gueddim A, Bouarissa N (2007) Theoretical investigation of the conduction and valence band offsets of GaAs1- x Nx/GaAs1- yNy heterointerfaces. Appl Surf Sci 253(17):7336–7341

    Article  CAS  Google Scholar 

  47. Gueddim A, Zerdoum R, Bouarissa N (2006) Effect of nitrogen concentration on mechanical properties of GaAs1-xNx dilute alloys. Mater Sci Eng B 131(1–3):11–115. https://doi.org/10.1016/j.mseb.2006.03.032

    Article  CAS  Google Scholar 

  48. Hervé P, Vandamme LKJ (1994) General relation between refractive index and energy gap in semiconductors. Infrared Phys Technol 35:609–615

    Article  Google Scholar 

  49. Ravindra NM, Ganapathy P, Choi J (2007) Energy gap-rafractive index relations in semiconductors—an overview. Infrared Phys Technol 50:21–29

    Article  CAS  Google Scholar 

  50. Yu PY, Cardona M (1996) Fundamentals of semiconductors. Phys Mater Prop 53:359–360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Bouarissa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouguerra, K., Aksas, A., Gueddim, A. et al. Study on graphene-like monolayer ZnS1−xOx: structural and optoelectronic properties. Theor Chem Acc 140, 161 (2021). https://doi.org/10.1007/s00214-021-02858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02858-2

Keywords

Navigation