Skip to main content
Log in

Effect of donor and acceptor on optoelectronic properties of benzo[1,2-b:4,5-b′]dithiophene

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A series of acceptor and donor groups anchored to benzo[1,2-b:4,5-b′]dithiophene (BDT) molecule have been systematically investigated at the density functional theory (DFT) and time-dependent density functional theory (TDDFT) level to reveal structure–property relationships, charge transfer, and fluorescence lifetimes. The DFT optimization shows that the hetero atom in the ring induces the polarity from central ring to both ends of the thiophene ring, participating in the conjugation. The donor and acceptor groups were anchored at the terminals of the BDT at two different positions to fine-tune the properties according to the requirement and study the push–pull effect. All the models studied in this work retain their aromaticity as estimated from NICS(0) and NICS(1) aromaticity index in ground and excited states. The results show that the hardness, softness, HOMO–LUMO gaps, ionization potentials (IP), and electron affinities (EA) of the BDTs are significantly affected by the electron-withdrawing and electron-donating groups. The 1H and 13C NMR chemical shift values have been computed to quantify the push–pull effect. Further, the charge transfer properties in these BDTs were explored based on reorganization energies and diagnostic descriptors derived from hole–electron theory that present different electron excitation behavior. The relationship between the computed variables such as highest occupied molecular orbital, lowest unoccupied molecular orbital, oscillator strength, dipole moment, absorption, and fluorescence energy correlates the system with one another and also to extend the possible applications of the system in optical devices. Structure–property relationship of various BDTs reveal that, upon optical excitation, the resonance effect plays an important role changing the bonding character between the substituent and BDT unit, enabling efficient electron delocalization. The examination of TDDFT results indicates that among the various models studied in this work, nitro-substituted model is better candidate for optoelectronic properties with relatively large absorption wavelength and long fluorescence lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Duan L, Chen J, Liu B, Wang X, Shu W, Yang R (2017) The A-D-A type small molecules with isomeric benzodithiophene cores: synthesis and influence of isomers on photoelectronic properties. Tetrahedron 73:550–557. https://doi.org/10.1016/j.tet.2016.12.044

    Article  CAS  Google Scholar 

  2. He G, Du L, Gong Y, Liu Y, Yu C, Wei C, Yuan WZ (2019) Crystallization-induced red phosphorescence and grinding-induced blue-shifted emission of a benzobis(1,2,5-thiadiazole)-thiophene conjugate. ACS Omega 4:344–351. https://doi.org/10.1021/acsomega.8b02805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen X, Liu B, Zou Y, Xiao L, Guo X, He Y, Li Y (2012) A new benzo[1,2-b:4,5-b′]difuran-based copolymer for efficient polymer solar cells. J Mater Chem 22:17724–17731. https://doi.org/10.1039/c2jm32843g

    Article  CAS  Google Scholar 

  4. Liu B, Chen X, He Y, Li Y, Xu X, Xiao L, Li L, Zou Y (2013) New alkylthienyl substituted benzo[1,2-b:4,5-b′]dithiophene-based polymers for high performance solar cells. J Mater Chem A 1:570–577. https://doi.org/10.1039/c2ta00474g

    Article  CAS  Google Scholar 

  5. Solomon RV, Veerapandian P, Vedha SA, Venuvanalingam P (2012) Tuning nonlinear optical and optoelectronic properties of vinyl coupled triazene chromophores: a density functional theory and time-dependent density functional theory investigation. J Phys Chem A 116:4667–4677. https://doi.org/10.1021/jp302276w

    Article  CAS  PubMed  Google Scholar 

  6. Liu YL, Feng JK, Ren AM (2007) Theoretical study of optical and electronic properties of the bis-dipolar diphenylamino-endcapped oligoarylfluorenes as promising light emitting materials. J Phys Org Chem 20:600–609. https://doi.org/10.1002/poc.1215

    Article  CAS  Google Scholar 

  7. Kulyk B, Kerasidou AP, Soumahoro L, Moussallem C, Gohier F, Frere P, Sahraoui B (2016) Optimization and diagnostic of nonlinear optical features of π-conjugated benzodifuran-based derivatives. RSC Adv 6:14439–14447. https://doi.org/10.1039/c5ra25889h

    Article  CAS  Google Scholar 

  8. Ahn M, Kim MJ, Cho DW, Wee KR (2021) Electron push-pull effects on intramolecular charge transfer in perylene-based donor-acceptor compounds. J Org Chem 86:403–413. https://doi.org/10.1021/acs.joc.0c02149

    Article  CAS  PubMed  Google Scholar 

  9. Bureš F (2014) Fundamental aspects of property tuning in push-pull molecules. RSC Adv 4:58826–58851. https://doi.org/10.1039/c4ra11264d

    Article  Google Scholar 

  10. Getmanenko YA, Fonari M, Risko C, Sandhu B, Galan E, Zhu L, Tongwa P, Hwang DK, Singh S, Wang H, Tiwari SP, Loo YL, Bredas JL, Kippelen B, Timofeeva T, Marder SR (2013) Benzo[1,2-b:6,5-b′]dithiophene(dithiazole)-4,5-dione derivatives: synthesis, electronic properties, crystal packing and charge transport. J Mater Chem C 1:1467–1481. https://doi.org/10.1039/c2tc00805j

    Article  CAS  Google Scholar 

  11. Xie X, Liu ZH, Bai FQ, Zhang HX (2019) Performance regulation of thieno[3,2-b]benzothiophene π-spacer-based D-π-A organic dyes for dye-sensitized solar cell applications: insights from computational study. Front Chem. https://doi.org/10.3389/fchem.2018.00676

    Article  PubMed  PubMed Central  Google Scholar 

  12. Keshtov ML, Marochkin DV, Kochurov VS, Khokhlov AR, Koukaras EN, Sharma GD (2014) New conjugated alternating benzodithiophene-containing copolymers with different acceptor units: synthesis and photovoltaic application. J Mater Chem A 2:155–171. https://doi.org/10.1039/c3ta12967e

    Article  CAS  Google Scholar 

  13. Figueira-Duarte TM, Müllen K (2011) Pyrene-based materials for organic electronics. Chem Rev 111:7260–7314. https://doi.org/10.1021/cr100428a

    Article  CAS  PubMed  Google Scholar 

  14. Li S, Li Y, Song P, Ma F, Yang Y (2017) A DFT study of the structures and photoelectric properties of benzodithiophene-based molecules by replacing sulfur with a variety of heteroatoms (O, N, P, Si, Se). ChemistrySelect 2:3838–3847. https://doi.org/10.1002/slct.201700085

    Article  CAS  Google Scholar 

  15. Li H, Yi C, Moussi S, Liu S, Daul C, Gratzel M, Decurtins S (2013) Benzo[1,2-b:4,5-b′]difuran-based sensitizers for dye-sensitized solar cells. RSC Adv 3:19798–19801. https://doi.org/10.1039/c3ra43669a

    Article  CAS  Google Scholar 

  16. Solomon RV, Jagadeesan R, Vedha SA, Venuvanalingam P (2014) A DFT/TDDFT modelling of bithiophene azo chromophores for optoelectronic applications. Dye Pigment 100:261–268. https://doi.org/10.1016/j.dyepig.2013.09.016

    Article  CAS  Google Scholar 

  17. Liu X, Xu Z, Cole JM (2013) Molecular design of UV-vis absorption and emission properties in organic fluorophores: toward larger bathochromic shifts, enhanced molar extinction coefficients, and greater stokes shifts. J Phys Chem C 117:16584–16595. https://doi.org/10.1021/jp404170w

    Article  CAS  Google Scholar 

  18. Bourass M, Touimi Benjelloun A, Benzakour M, Mcharfi M, Jhilal F, Serein-Spirau F, Sotiropoulos JM, Bouachrine M (2017) DFT/TD-DFT characterization of conjugational electronic structures and spectral properties of materials based on thieno[3,2-b][1]benzothiophene for organic photovoltaic and solar cell applications. J Saudi Chem Soc 21:563–574. https://doi.org/10.1016/j.jscs.2017.01.001

    Article  CAS  Google Scholar 

  19. Pavilek B, Kožíšek J, Zalibera M, Luspai K, Gibulkova Z, Koziskova J, Vegh D (2020) Ortho-substituent-controlled regioselective cyclisation of 1,4-phenylenediacrylic acid to a linear benzo[1,2-b:4,5-b′]dithiophene derivative as a building block for semiconducting materials. Tetrahedron Lett. https://doi.org/10.1016/j.tetlet.2020.151608

    Article  Google Scholar 

  20. Ghosh D, Periyasamy G, Pati SK (2011) Density functional theoretical investigation of the aromatic nature of BN substituted benzene and four ring polyaromatic hydrocarbons. Phys Chem Chem Phys 13:20627–20636. https://doi.org/10.1039/c1cp22104c

    Article  CAS  PubMed  Google Scholar 

  21. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks, GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasega KJ, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K ZV, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J FD (2009) Gaussian 09, Revision D. Gaussian, Inc Wallingford, CT

  23. Reed AE, Weinhold F (2017) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  Google Scholar 

  24. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  25. Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci 83:8440–8441. https://doi.org/10.1073/pnas.83.22.8440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318. https://doi.org/10.1021/ja960582d

    Article  CAS  PubMed  Google Scholar 

  27. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260. https://doi.org/10.1021/ja00179a005

    Article  CAS  Google Scholar 

  28. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  29. Liu Z, Lu T, Chen Q (2020) An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity. Carbon N Y 165:461–467. https://doi.org/10.1016/j.carbon.2020.05.023

    Article  CAS  Google Scholar 

  30. Lu T (2021) Multiwfn-A multifunctional wavefunction analyzer, Software Manual, version 3.8 (dev). http://sobereva.com/multiwfn

  31. Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037. https://doi.org/10.1021/cr0505627

    Article  CAS  PubMed  Google Scholar 

  32. Li T-C, Tong P (1986) Time-dependent density-functional theory for multicomponent systems. Phys Rev A 34:529–532. https://doi.org/10.1103/PhysRevA.34.529

    Article  CAS  Google Scholar 

  33. Michael K (1950) Characterization of electronic transitions in complex molecules. Discuss Faraday Soc 9:14–19

    Article  Google Scholar 

  34. Valencia D, Whiting GT, Bulo RE, Weckhuysen BM (2016) Protonated thiophene-based oligomers as formed within zeolites: understanding their electron delocalization and aromaticity. Phys Chem Chem Phys 18:2080–2086. https://doi.org/10.1039/c5cp06477e

    Article  CAS  PubMed  Google Scholar 

  35. Marcus RA (1993) Electron transfer reactions in chemistry: theory and experiment (Nobel Lecture). Angew Chem Int Ed Engl 32:1111–1121. https://doi.org/10.1002/anie.199311113

    Article  Google Scholar 

  36. Rana B, Periyasamy G, Bhattacharya A (2016) On the ultrafast charge migration dynamics in isolated ionized halogen, chalcogen, pnicogen, and tetrel bonded clusters. Chem Phys. https://doi.org/10.1016/j.chemphys.2016.02.018

    Article  Google Scholar 

  37. Calvo-Castro J, McHugh CJ, McLean AJ (2015) Torsional angle dependence and switching of inner sphere reorganisation energies for electron and hole transfer processes involving phenyl substituted diketopyrrolopyrroles; A density functional study. Dye Pigment 113:609–617. https://doi.org/10.1016/j.dyepig.2014.09.031

    Article  CAS  Google Scholar 

  38. Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7:2498–2506. https://doi.org/10.1021/ct200308m

    Article  CAS  PubMed  Google Scholar 

  39. Guido CA, Cortona P, Mennucci B, Adamo C (2015) Relation between nonlinear optical properties of push-pull molecules and metric of charge transfer excitations. J Chem Theory Comput 11:4182–4188. https://doi.org/10.1021/acs.jctc.5b00538

    Article  CAS  Google Scholar 

  40. Adamo C, Le Bahers T, Savaresea M, Wilbrahama L, García G, Fukudaf R, Eharaf M, Rega N, Ciofini I (2015) Exploring excited states using time dependent density functional theory and density-based indexes. Coord Chem Rev 304–305:166–178. https://doi.org/10.1016/j.ccr.2015.03.027

    Article  CAS  Google Scholar 

  41. Rubio A, Marques M (2009) Time-dependent density-functional theory. Phys Chem Chem Phys 11:4436. https://doi.org/10.1039/b908105b

    Article  CAS  PubMed  Google Scholar 

  42. Wiggins P, Williams JAG, Tozer DJ (2009) Excited state surfaces in density functional theory: a new twist on an old problem. J Chem Phys. https://doi.org/10.1063/1.3222641

    Article  PubMed  Google Scholar 

  43. Bransden BH, Joachain CJ (1983) Physics of atoms and molecules. Longman, London, UK

    Google Scholar 

Download references

Acknowledgements

G P and D M G thank the Department of Science and Technology-Core Research Grant (DST-CRG), GOI, for funding. K F thanks the Department of Science and Technology (DST), GOI, for the award of Innovation in Science Pursuit for Inspired Research (INSPIRE) Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Authors KF and DMG have equally contributed the work under the guidance of GP.

Corresponding author

Correspondence to Ganga Periyasamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47734 kb)

Supplementary file2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazl-Ur-Rahman, K., Govindachar, D.M. & Periyasamy, G. Effect of donor and acceptor on optoelectronic properties of benzo[1,2-b:4,5-b′]dithiophene. Theor Chem Acc 140, 156 (2021). https://doi.org/10.1007/s00214-021-02855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02855-5

Keywords

Navigation