Skip to main content
Log in

A global analysis of excited states: the global transition contribution grids

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work, we develop and apply a tool allowing for a condensed analysis of the nature and energetics of the electronic excited states computed using time-dependent density functional theory (TD-DFT) inspired by the transition contribution map (TCM) analysis of Hakkinen and collaborators. This new analysis will be referred to as Global Transition Contribution Grid (G_TCG) and will be applied to compare the behavior of two families of exchange correlation functionals for the description of the excited states of a series of five polycyclic aromatic hydrocarbons (PAH) molecules. These latter are indeed known to be problematically described at the excited state by local and semi-local exchange correlation functionals. Although further improvement is possible, our results show that G_TCG can be used to qualitatively spot difference in the behavior of the different functionals not only in energetics but also in the nature of the computed transitions in a condensed and qualitative way. More generally, the global grid-based analysis could help in the analysis of the excited states of systems possessing a complex electronic structure and a dense molecular orbitals manifold close to the frontier orbitals, such as nanoparticles or large π-conjugated systems, for which several hole–electron pairs are expected to contribute to single electronic transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules, vol 16. The international series of monographs on chemistry. Oxford University Press, New York

  2. Koch W, Holthausen MC (2015) A chemist's guide to density functional theory, 2nd edn. John Wiley & Sons

  3. Ullrich CA (2012) Time-dependent density-functional theory: concepts and applications. Oxford graduate texts. Oxford University Press, Oxford

    Google Scholar 

  4. Adamo C, Jacquemin D (2013) Chem Soc Rev 42:845

    Article  CAS  Google Scholar 

  5. Silva-Junior MR, Schreiber M, Sauer SP, Thiel W (2008) J Chem Phys 129:104103

    Article  Google Scholar 

  6. Hieringer W, Gorling A (2006) Chem Phys Lett 419:557

    Article  CAS  Google Scholar 

  7. Gritsenko O, Baerends EJ (2004) J Chem Phys 121:655

    Article  CAS  Google Scholar 

  8. Dreuw A, Weisman JL, Head-Gordon M (2003) J Chem Phys 119:2943

    Article  CAS  Google Scholar 

  9. Dreuw A, Head-Gordon M (2004) J Am Chem Soc 126:4007

    Article  CAS  Google Scholar 

  10. Campetella M, Maschietto F, Frisch MJ, Scalmani G, Ciofini I, Adamo C (2017) J Comput Chem 38:2151–2156

    Article  CAS  Google Scholar 

  11. Yanai T, Tew DP, Handy NCA (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  12. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540–3544

    Article  CAS  Google Scholar 

  13. Jacquemin D, Perpète E, Scuseria G, Ciofini I, Adamo C (2008) J Chem Theory Comput 4:123–135

    Article  CAS  Google Scholar 

  14. Jacquemin D, Perpète E, Ciofini I, Adamo C (2009) Acc Chem Res 42:326–334

    Article  CAS  Google Scholar 

  15. Stein T, Kronik L, Baer R (2009) J Am Chem Soc 131:2818–2820

    Article  CAS  Google Scholar 

  16. Grimme S (2006) J Chem Phys 124:034108

    Article  Google Scholar 

  17. Grimme S, Neese F (2007) J Chem Phys 127:154116

    Article  Google Scholar 

  18. Casanova-Páez M, Dardis MB, Goerigk L (2019) J Chem Theory Comput 15:4735–4744

    Article  Google Scholar 

  19. Ottochian A, Morgillo C, Ciofini I, Frisch MJ, Scalmani G, Adamo C (2020) J Comput Chem 41:1242–1251

    Article  CAS  Google Scholar 

  20. Casanova-Páez M, Goerigk L (2021) J Comput Chem 42:528–533

    Article  Google Scholar 

  21. Brémond E, Ottochian A, Pérez-Jiménez AJ, Ciofini I, Scalmani G, Frisch MJ, Sancho-García JC, Adamo C (2021). J Comput Chem. https://doi.org/10.1002/jcc.26517

    Article  PubMed  Google Scholar 

  22. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  23. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  24. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029–5036

    Article  CAS  Google Scholar 

  25. Verma P, Truhlar D (2020) Trends Chem 2:302–318

    Article  CAS  Google Scholar 

  26. Martin RL (2003) J Chem Phys 118:4775

    Article  CAS  Google Scholar 

  27. Huet L, Perfetto A, Muniz-Miranda F, Campetella M, Adamo C, Ciofini I (2020) J Chem Theory Comput 16:4543–4553

    Article  CAS  Google Scholar 

  28. Campetella M, Perfetto A, Ciofini I (2019) Chem Phys Lett 714:81–86

    Article  CAS  Google Scholar 

  29. Le Bahers T, Adamo C, Ciofini I (2011) J Chem Theory Comput 7:2498–2506

    Article  Google Scholar 

  30. Malola S, Lehtovaara L, Enkovaara J, Hakkinen H (2013) ACS Nano 7:10263–10270

    Article  CAS  Google Scholar 

  31. Richard RM, Herbert JM (2011) J Chem Theory Comput 7:1296–1306

    Article  CAS  Google Scholar 

  32. Parac M, Grimme S (2003) Chem Phys 292:11–21

    Article  CAS  Google Scholar 

  33. Grimme S, Parac M (2003) ChemPhysChem 4:292–295

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ, Gaussian Inc Wallingford CT (2016)

  35. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  36. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  37. Becke AD (1998) Phys Rev A 38:3098–3100

    Article  Google Scholar 

  38. Lee CT, Yang W, Parr TRG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  40. Dunning HJ (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  41. Baseggio O, De Vetta M, Fronzoni G, Stener M, Sementa L, Fortunelli A, Calzolari A (2016) J Phys Chem C 120:12773–12782

    Article  CAS  Google Scholar 

  42. Baseggio O, Fronzoni G, Stener M (2015) J Chem Phys 143:024106

    Article  Google Scholar 

Download references

Acknowledgements

C. M. and I.C. thank the European Research Council (ERC) for funding under the European Union’s Horizon 2020 research and innovation program (Grant agreement No 648558, STRIGES CoG grant).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Adamo or I. Ciofini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgillo, C., Korsaye, FA., Ottochian, A. et al. A global analysis of excited states: the global transition contribution grids. Theor Chem Acc 140, 158 (2021). https://doi.org/10.1007/s00214-021-02854-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02854-6

Keywords

Navigation