Skip to main content
Log in

Insights into the origin of selectivity for [2+2] cycloaddition step reaction involved in the mechanism of enantioselective reduction of ketones with borane catalyzed by a B-methoxy oxazaborolidine catalyst derived from (–)-β-pinene: an HMDFT and combined topological ELF, NCI and QTAIM study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Theoretical studies on [2+2] cycloaddition step involved in the enantioselective reduction of ketones with borane catalyzed by a B-methoxyoxazaborolidine catalyst derived from pinene have been performed by means of the hybrid meta density functional theory method at MPWB1K/6-31G (d,p). The formation of the M5a(S) complexes via transition state TSa(S) was the more favorable pathway among other [2+2] cycloaddition competing steps. The explanation of the formation of O–B and N–B through two-stage one-step mechanism was allowed by means of the electron localization function topological analysis. NCI and QTAIM analysis of the two computed transition states TSa(S) and TSa(R) indicates that the difference between both in terms of stability comes mainly from the orientation of the methanediyl group inside the pinene skeleton, which implies that CH–H…O interaction found at TSa(S) is the great factor that makes it more stable than TSa(R).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hirao A, Itsuno S, Nakahama S, Yamazaki N (1981) J Chem Soc Chem Commun 5:315–317

    Article  Google Scholar 

  2. Hirao A, Itsuno S, Nakahama S, Ito K (1983) J Chem Soc Chem Commun 5:469–470

    Google Scholar 

  3. Corey EJ, Bakshi RK, Shibata S (1987) J Am Chem Soc 109:5551

    Article  CAS  Google Scholar 

  4. Corey EJ, Bakshi RK, Shibata S, Chen CP, Singh VK (1987) J Am Chem Soc 109:7925–7926

    Article  CAS  Google Scholar 

  5. Corey EJ, Shibata S, Bakshi RK (1988) J Org Chem 53:2861

    Article  CAS  Google Scholar 

  6. Corey EJ, Helal CJ (1998) Angew Chem Int Ed 37:1986–2012

    Article  CAS  Google Scholar 

  7. Wallbaum S, Martens J (1992) Tetrahedron Asymmetry 3:1475–1504

    Article  CAS  Google Scholar 

  8. Singh VK (1992) Synthesis 7:605

    Article  Google Scholar 

  9. Deloux L, Srebnik M (1993) Chem Rev 93:763

    Article  CAS  Google Scholar 

  10. Corey EJ, Helal CJ (1986) Angew Chem Int Ed Engl 1998:37

    Google Scholar 

  11. Masui M, Shioiri T (1997) Synlett 1:273–274

    Article  Google Scholar 

  12. Krzemiński MP, Wojtczak A (2005) Tetrahedron Lett 46:8299–8302

    Article  Google Scholar 

  13. Wei D, Tang M, Zhao J, Sun L, Zhang W, Zhao C, Zhang S, Wang H (2009) Tetrahedron Asymmetry 20:1020–1026

    Article  CAS  Google Scholar 

  14. Sun L, Tang M, Wang H, Wei D, Liu L (2008) Tetrahedron Asymmetry 19:779–787

    Article  CAS  Google Scholar 

  15. Xu J, Wei T, Zhang Q (2004) J Org Chem 69:6860–6866

    Article  CAS  PubMed  Google Scholar 

  16. Kettouche HS (2020) J Mol Model 26:27

    Article  CAS  PubMed  Google Scholar 

  17. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  18. Contreras-Garcίa J, Johnson ER, Keinan S, Chaudert R, Piquemal JP, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632

    Article  Google Scholar 

  19. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  20. Frisch MJ (2009) Gaussian 09, Revision A.02. Gaussian, Wallingford

  21. Zhao Y, Truhlar DG (2004) J Phys Chem A 108(33):6908–6918

    Article  CAS  Google Scholar 

  22. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  23. Hratchian HP, Schlegel HB (2002) J Chem Phys 106:165–169

    Article  CAS  Google Scholar 

  24. Fukui K (1970) J Phys Chem 74:4161

    Article  CAS  Google Scholar 

  25. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  26. Parr RG, Yang W (1989) Density, functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  27. Parr RG, von Szentpaly L, Liu S (1922) J Am Chem Soc 1999:121

    Google Scholar 

  28. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen J, Yang AW (2010) J Am Chem Soc 132:6498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lane JR, Contreras-Garcia J, Piquemal JP, Miller BJ, Kjaergaard HGJ (2013) Chem Theory Comput 9:3263

    Article  CAS  Google Scholar 

  30. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  31. Humphrey W, Dalke A, Schulten KVMD (1996) visual molecular dynamics. J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  32. Bader RFW (1990) Atoms in molecule. A quantum theory. Claredon Press, Oxford

    Google Scholar 

  33. Tachibana A (1999) Theor Chem Acc 102:188

    Article  CAS  Google Scholar 

  34. Tachibana A, Parr RG (1992) Int J Quantum Chem 41:527

    Article  CAS  Google Scholar 

  35. Tachibana A (1996) Int J Quantum Chem 57:423

    Article  CAS  Google Scholar 

  36. Houk KN (1975) Acc Chem Res 8:361

    Article  CAS  Google Scholar 

  37. Wiberg KB (1968) Tetrahedron 24:1083

    Article  CAS  Google Scholar 

  38. Domingo LR, Emamian SR (2014) Tetrahedron 70:1267–1273

    Article  CAS  Google Scholar 

  39. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Tetrahedron 72:1524–1532

    Article  CAS  Google Scholar 

  40. Savin A (2005) J Chem Sci 117:473

    Article  CAS  Google Scholar 

  41. Eschmann C, Lijuan S, Schreiner PR (2021) Angew Chem Int Ed 60:4823–4832

    Article  CAS  Google Scholar 

  42. Ríos-Gutiérrez M, Nasri L, Khorief Nacereddine A, Djerourou A, Domingo LR (2018) J Phys Org Chem 31:e3830

    Article  Google Scholar 

  43. Bianchi R, Gervasio G, Marabello D (2000) Inorg Chem 39:2360–2366

    Article  CAS  PubMed  Google Scholar 

  44. Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529–5542

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hichem Sadrik Kettouche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kettouche, H.S., Djerourou, A. Insights into the origin of selectivity for [2+2] cycloaddition step reaction involved in the mechanism of enantioselective reduction of ketones with borane catalyzed by a B-methoxy oxazaborolidine catalyst derived from (–)-β-pinene: an HMDFT and combined topological ELF, NCI and QTAIM study. Theor Chem Acc 140, 150 (2021). https://doi.org/10.1007/s00214-021-02848-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02848-4

Keywords

Navigation