Skip to main content
Log in

A theoretical study of β-hydroxybutenyl with O2 on the HOC4H6OO· potential energy surface

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The reaction of β-hydroxybutenyl radicals with O2 and subsequent reactions are regarded as crucial steps in the low-temperature oxidation of 1,3-butadiene. However, the reaction network is not complete and previous studies failed to include accurate rate constants. In this study, the reaction network of β-hydroxybutenyl radicals with O2 is supplemented, as well as the temperature- and pressure-dependent rate constants which are investigated by high-level quantum chemical calculation, combining with the transition state theory (TST), the variational transition state theory (VTST) and Rice–Ramsperger–Kassel–Marcus/master equation method (RRKM/ME). The results of quantum chemical calculations indicate that Waddington reaction is the dominant channel, while the intramolecular addition reactions of the radical center atoms to the double bonds are found to be important non-alkyl-analogue reactions. Moreover, some of the reactions are investigated in the present study as well, whose pressure-dependent kinetics have not been reported so far. The calculations indicate that addition reaction of β-hydroxybutenyl with O2 is pressure independent when the temperature is below 600 K, while above 600 K, the effect of pressure is increasingly significant. Furthermore, the formation of β-hydroxybutenylperoxy is a dominant channel when the pressure is above 1 atm, while below 0.1 atm, other channels begin to take place with the increase in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Granata S, Faravelli T, Ranzi E, Olten N, Senkan S (2002) Combust Flame 131(3):273–284

    Article  CAS  Google Scholar 

  2. Huang C, Yang B, Zhang F (2017) Combust Flame 184:167–175

    Article  CAS  Google Scholar 

  3. Hansen N, Miller JA, Kasper T, Kohse-Höinghaus K, Westmoreland PR, Wang J, Cool TA (2009) Pro Combust Inst 32(1):623–630

    Article  CAS  Google Scholar 

  4. Moshammer K, Seidel L, Wang Y, Selim H, Sarathy SM, Mauss F, Hansen N (2017) Pro Combust Inst 36(1):947–955

    Article  CAS  Google Scholar 

  5. Blanquart G, Pepiot-Desjardins P, Pitsch H (2009) Combust Flame 156(3):588–607

    Article  CAS  Google Scholar 

  6. Zhou C, Li Y, Burke U, Banyon C, Somers KP, Ding S, Khan S, Hargis JW, Sikes T, Mathieu O, Petersen EL, AlAbbad M, Farooq A, Pan Y, Zhang Y, Huang Z, Lopez J, Loparo Z, Vasu SS, Curran HJ (2018) Combust Flame 197:423–438

    Article  CAS  Google Scholar 

  7. Zádor J, Jasper AW, Miller JA (2009) Phys Chem Chem Phys 11(46):11040

    Article  PubMed  CAS  Google Scholar 

  8. Miyoshi A (2012) Int J Chem Kinet 44(1):59–74

    Article  CAS  Google Scholar 

  9. Lizardo-Huerta JC, Sirjean B, Bounaceur R, Fournet R. (2013). 6th European Combustion Meeting

  10. Heyberger B, Battin-Leclerc F, Warth V, Fournet R, Côme GM, Scacchi G (2001) Combust Flame 126(4):1780–1802

    Article  CAS  Google Scholar 

  11. Zhang W, Du B (2015) J Phys Chem A 119(17):4065–4072

    Article  CAS  PubMed  Google Scholar 

  12. Da Silva G, Bozzelli JW, Liang L, Farrell JT (2009) J Phys Chem A 113(31):8923–8933

    Article  PubMed  CAS  Google Scholar 

  13. Díaz Acosta I, Alvarez Idaboy JR, Vivier Bunge A (1999) Int J Chem Kinet 31(1):29–36

    Article  Google Scholar 

  14. Zádor J, Fernandes RX, Georgievskii Y, Meloni G, Taatjes CA, Miller JA (2009) Pro Combust Inst 32(1):271–277

    Article  CAS  Google Scholar 

  15. Sun H, Bozzelli JW, Law CK (2007) J Phys Chem A 111(23):4974–4986

    Article  CAS  PubMed  Google Scholar 

  16. Lizardo-Huerta JC, Sirjean B, Bounaceur R, Fournet R (2016) Phys Chem Chem Phys 18(17):12231–12251

    Article  CAS  PubMed  Google Scholar 

  17. Guo J, Tang S, Tan N (2017) RSC Adv 7(71):44809–44819

    Article  CAS  Google Scholar 

  18. Gonzalez C, Schlegel HB (1989) J Phys Chem 90(4):2154–2161

    Article  CAS  Google Scholar 

  19. Goldsmith CF, Harding LB, Georgievskii Y, Miller JA, Klippenstein SJ (2015) J Phys Chem A 119(28):7766–7779

    Article  CAS  PubMed  Google Scholar 

  20. Lopez JG, Rasmussen CL, Alzueta MU, Gao Y, Marshall P, Glarborg P (2009) Pro Combust Inst 32(1):367–375

    Article  CAS  Google Scholar 

  21. Lee TJ, Rendell AP, Taylor PR (1990) J Phys Chem 94(14):5463–5468

    Article  CAS  Google Scholar 

  22. Rienstra-Kiracofe JC, Allen WD, Schaefer HF (2000) J Phys Chem A 104(44):9823–9840

    Article  CAS  Google Scholar 

  23. Alecu IM, Truhlar DG (2011) J Phys Chem A 115(13):2811–2829

    Article  CAS  PubMed  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, PeterssonGA NH, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, KitaoO NH, Vreven T, Montgomery JA Jr, Peralta JE, OgliaroF BM, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, GompertsR SRE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkaso FJB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 Revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  25. Werner HJ, Knowles PJ, Manby FR, Black JA, Doll K, Heßelmann A, Kats D, Köhn A, Korona T, Kreplin DA, Ma Q, Miller TF, Mitrushchenkov A, Peterson KA, Polyak I, Rauhut G, Sibaev M (2020) J. Chem. Phys 152(14):144107

    Article  CAS  PubMed  Google Scholar 

  26. Pechukas P (1981) Rev Phys Chem 32:159–177

    Article  CAS  Google Scholar 

  27. Klippenstein SJ (1992) J Phys Chem 96(1):367–371

    Article  Google Scholar 

  28. Klippenstein SJ (1994) J Phys Chem 98(44):11459–11464

    Article  CAS  Google Scholar 

  29. Miller JA, Klippenstein SJ (2013) Phys Chem Chem Phys 15(13):4744–4753

    Article  CAS  PubMed  Google Scholar 

  30. Miller JA, Klippenstein SJ (2006) J Phys Chem A 110(36):10528–10544

    Article  CAS  PubMed  Google Scholar 

  31. Georgievskii Y, Miller JA, Burke MP, Klippenstein SJ (2013) J Phys Chem A 117(46):12146–12154

    Article  CAS  PubMed  Google Scholar 

  32. Miller JA, Klippenstein SJ (2003) J Phys Chem A 107(15):2680–2692

    Article  CAS  Google Scholar 

  33. Pitzer KS, Gwinn WD (1942) J Phys Chem 10(7):428–440

    Article  CAS  Google Scholar 

  34. Pfaendtner J, Yu X, Broadbelt LJ (2007) Theor Chem Acc 118(5–6):881–898

    Article  CAS  Google Scholar 

  35. Sun Y, Yao Q, Li Z, Li J, Li X (2016) Chem J Chinese U 37(2):328–334

    CAS  Google Scholar 

  36. Goldsmith CF, Green WH, Klippenstein SJ (2012) J Phys Chem A 116(13):3325–3346

    Article  CAS  PubMed  Google Scholar 

  37. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Phys Chem 109(18):7764–7776

    Article  CAS  Google Scholar 

  38. Curtiss LA, Redfern PC, Raghavachari K (2007) J Phys Chem 126(8):84108

    Article  CAS  Google Scholar 

  39. Ochterski JW, Petersson GA, Montgomery JA (1996) J Phys Chem 104(7):2598–2619

    Article  CAS  Google Scholar 

  40. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Phys Chem 110(6):2822–2827

    Article  CAS  Google Scholar 

  41. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (2000) J Phys Chem 112(15):6532–6542

    Article  CAS  Google Scholar 

  42. Simmie JM, Somers KP (2015) J Phys Chem A 119(28):7235–7246

    Article  CAS  PubMed  Google Scholar 

  43. Keçeli M, Elliott SN, Li Y, Johnson MS, Cavallotti C, Georgievskii Y, Green WH, Pelucchi M, Wozniak JM, Jasper AW, Klippenstein SJ (2019) Pro Combust Inst 37(1):363–371

    Article  CAS  Google Scholar 

  44. Murat Keçeli SJK, McBride BJ, Gordon S (2018) Quantum Thermochemistry Calculator (Qtc)

  45. Miyoshi A (2010) Int J Chem Kinet 42(5):273–288

    Article  CAS  Google Scholar 

  46. Goldsmith CF, Green WH, Klippenstein SJ (2012) Pro Combust Inst 33(1):273–282

    Article  CAS  Google Scholar 

  47. Ray DJM, Diaz RR, Waddington DJ (1973) Symp Combust 14(1):259–266

    Article  Google Scholar 

  48. Yang M, Wan Z, Tan N, Zhang C (2020) W J, Li X. Combust Flame 221:20–40

    Article  CAS  Google Scholar 

  49. Zhou C, Li Y, O’Connor E, Somers KP, Thion S, Keese C, Mathieu O, Petersen EL, DeVerter TA, Oehlschlaeger MA, Kukkadapu G, Sung C, Alrefae M, Khaled F, Farooq A, Dirrenberger P, Glaude P, Battin-Leclerc F, Santner J, Ju Y, Held T, Haas FM, Dryer FL, Curran HJ (2016) Combust Flame 167:353–379

    Article  CAS  Google Scholar 

  50. Xing L, Zhang F, Zhang L (2017) Pro Combust Inst 36(1):179–186

    Article  CAS  Google Scholar 

  51. Yao Q, Sun X, Li Z, Chen F, Li X (2017) J Phys Chem A 121(16):3001–3018

    Article  CAS  PubMed  Google Scholar 

  52. Yao X, Wang J, Yao Q, Li Y, Li Z, Li X (2019) Combust Flame 204:176–188

    Article  CAS  Google Scholar 

  53. Klippenstein SJ (2017) Pro Combust Inst 36(1):77–111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by project of 2017-I-0004-0004 and the National Science Foundation of China (No. 91741201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Bo Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1626 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YW., Yang, M., Wang, JB. et al. A theoretical study of β-hydroxybutenyl with O2 on the HOC4H6OO· potential energy surface. Theor Chem Acc 140, 144 (2021). https://doi.org/10.1007/s00214-021-02842-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02842-w

Keywords

Navigation