Skip to main content
Log in

Improvement of floxuridine anti-cancer adsorption on boron carbonitride nanotubes with iron doping: a theoretical study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Nowadays, nanotubes are regarded as one of the most important carriers to transfer drug into target cell without side effects. In this study, low-lying structures of single-wall boron carbonitride nanotube (SWBCNNT) as a novel class of carriers have been investigated using M06-2X/6-31 + g(d) method after DFT calibration. With regard to mixing patterns for SWBCNNT formation, L(BN) R(C)3 nanotube has selected as candidate structure due to more negative value of mixing energy. So, Fe-doping in this nanotube is carried out to have strong floxuridine (FUDR) anti-cancer adsorption and better drug delivery. Global chemical reactivity indices can help to select suitable doping position; these indices show that doping instead carbon (Fe–C{L(BN) R(C)3} nanotube) causes the most tendency for interaction with the FUDR anticancer. Besides, local reactivity descriptors show that favorable active sites of anticancer for nucleophilic attacks are oxygen (O5 and O6) and nitrogen (N7) atoms. Furthermore, comparing of adsorption energies shows that selected doped nanotube has strong interaction with mentioned active sites of FUDR anticancer in perpendicular orientation. This issue is confirmed by their adsorption energies values and significant donor–acceptor charge transfers. Therefore, Fe–C{L(BN) R(C)3} nanotube is proposed as favorable carrier to FUDR anticancer transfer into target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within supplementary material.

References

  1. DG Power NE Kemeny 2009 The role of floxuridine in metastatic liver disease Mol Cancer Ther 8 1015 1025 https://doi.org/10.1158/1535-7163.MCT-08-0709

    Article  CAS  PubMed  Google Scholar 

  2. C Jin H Zhang J Zou 2018 Floxuridine homomeric oligonucleotides “hitchhike” with albumin in situ for cancer chemotherapy Angew Chem Int Ed 57 8994 8997 https://doi.org/10.1002/anie.201804156

    Article  CAS  Google Scholar 

  3. W-S Yeo R Arya KK Kim 2018 The FDA-approved anti-cancer drugs, streptozotocin and floxuridine, reduce the virulence of Staphylococcus aureus Sci Rep 8 2521 https://doi.org/10.1038/s41598-018-20617-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Y Ma H Liu Q Mou 2018 Floxuridine-containing nucleic acid nanogels for anticancer drug delivery Nanoscale 10 8367 8371 https://doi.org/10.1039/C8NR01226A

    Article  CAS  PubMed  Google Scholar 

  5. J You F-Q Hu Y-Z Du H Yuan 2008 Improved cytotoxicity of doxorubicin by enhancing its nuclear delivery mediated via nanosized micelles Nanotechnology 19 255103 https://doi.org/10.1088/0957-4484/19/25/255103

    Article  CAS  PubMed  Google Scholar 

  6. Y Luo MR Ziebell GD Prestwich 2000 A hyaluronic acid−taxol antitumor bioconjugate targeted to cancer cells Biomacromol 1 208 218 https://doi.org/10.1021/bm000283n

    Article  CAS  Google Scholar 

  7. Y Miyamoto A Rubio ML Cohen SG Louie 1994 Chiral tubules of hexagonal BC2N N Phys Rev B 50 4976 4979 https://doi.org/10.1103/PhysRevB.50.4976

    Article  CAS  Google Scholar 

  8. X Blase J-C Charlier A Vita De R Car 1999 Structural and electronic properties of composite B x C y N z nanotubes and heterojunctions Appl Phys A Mater Sci Process 68 293 300 https://doi.org/10.1007/s003390050891

    Article  CAS  Google Scholar 

  9. XD Bai J Yu S Liu EG Wang 2000 Role of nickel particles in selected growth of boron carbonitride tubular structures Chem Phys Lett 325 485 489 https://doi.org/10.1016/S0009-2614(00)00705-3

    Article  CAS  Google Scholar 

  10. MA Mannan T Kida H Noguchi 2009 Atomic arrangement, composition and orientation of hexagonal BCN films synthesized by radiofrequency plasma enhanced CVD J Ceram Soc Jpn 117 503 507 https://doi.org/10.2109/jcersj2.117.503

    Article  Google Scholar 

  11. CY Zhi XD Bai EG Wang 2004 Boron carbonitride nanotubes J Nanosci Nanotechnol 4 35 51 https://doi.org/10.1166/jnn.2004.018

    Article  CAS  PubMed  Google Scholar 

  12. CY Zhi XD Bai EG Wang 2002 Raman characterization of boron carbonitride nanotubes Appl Phys Lett 80 3590 3592 https://doi.org/10.1063/1.1479207

    Article  CAS  Google Scholar 

  13. R Arenal X Blase A Loiseau 2010 Boron-nitride and boron-carbonitride nanotubes: synthesis, characterization and theory Adv Phys 59 101 179 https://doi.org/10.1080/00018730903562033

    Article  CAS  Google Scholar 

  14. D Chen Y Huang X Hu R Li YL Qian 2018 Green synthesis of boron carbonitride with high capacitance Materials 11 387 https://doi.org/10.3390/ma11030387

    Article  CAS  PubMed Central  Google Scholar 

  15. CY Zhi JD Guo XD Bai EG Wang 2002 Adjustable boron carbonitride nanotubes J Appl Phys 91 5325 5333 https://doi.org/10.1063/1.1459596

    Article  CAS  Google Scholar 

  16. W An CH Turner 2010 Linking carbon and boron-nitride nanotubes: heterojunction energetics and band gap tuning J Phys Chem Lett 1 2269 2273 https://doi.org/10.1021/jz100753x

    Article  CAS  Google Scholar 

  17. M Machado T Kar P Piquini 2011 The influence of the stacking orientation of C and BN stripes in the structure, energetics, and electronic properties of BC 2 N nanotubes Nanotechnology 22 205706 https://doi.org/10.1088/0957-4484/22/20/205706

    Article  CAS  PubMed  Google Scholar 

  18. H Pan YP Feng J Lin 2006 Ab initio study of single-wall BC 2 N nanotubes Phys Rev B 74 045409 https://doi.org/10.1103/PhysRevB.74.045409

    Article  CAS  Google Scholar 

  19. J Garel C Zhao R Popovitz-Biro 2014 BCN nanotubes as highly sensitive torsional electromechanical transducers Nano Lett 14 6132 6137 https://doi.org/10.1021/nl502161h

    Article  CAS  PubMed  Google Scholar 

  20. E Zahedi 2011 Size-dependent electronic structures of boron carbonitride (BC2N) nanotubes A DFT approach Superlattices Microstruct 50 491 500 https://doi.org/10.1016/j.spmi.2011.08.011

    Article  CAS  Google Scholar 

  21. AR Juárez EC Anota HH Cocoletzi 2017 Stability and electronic properties of armchair boron nitride/carbon nanotubes Fullerenes Nanotub Carbon Nanostruct 25 716 725 https://doi.org/10.1080/1536383X.2017.1389905

    Article  Google Scholar 

  22. A Soltani Z Azmoodeh MB Javan 2016 A DFT study of adsorption of glycine onto the surface of BC2N nanotube Appl Surf Sci 384 230 236 https://doi.org/10.1016/j.apsusc.2016.04.162

    Article  CAS  Google Scholar 

  23. AS Ghasemi MR Taghartapeh A Soltani PJ Mahon 2019 Adsorption behavior of metformin drug on boron nitride fullerenes: thermodynamics and DFT studies J Mol Liq 275 955 967 https://doi.org/10.1016/j.molliq.2018.11.124

    Article  CAS  Google Scholar 

  24. P Nematollahi EC Neyts 2018 A comparative DFT study on CO oxidation reaction over Si-doped BC2N nanosheet and nanotube Appl Surf Sci 439 934 945 https://doi.org/10.1016/j.apsusc.2017.12.254

    Article  CAS  Google Scholar 

  25. M Akhavan S Jalili J Schofield 2015 Effect of diameter and chirality on the structure and electronic properties of BC2N nanotubes Chem Phys 455 88 93 https://doi.org/10.1016/j.chemphys.2015.04.018

    Article  CAS  Google Scholar 

  26. C-K Yang 2011 Exploring the interaction between the boron nitride nanotube and biological molecules Comput Phys Commun 182 39 42 https://doi.org/10.1016/j.cpc.2010.07.040

    Article  CAS  Google Scholar 

  27. BR Goldsmith JG Coroneus VR Khalap 2007 Conductance-controlled point functionalizartion of single-walled carbon nanotubes Science 315 77 81 https://doi.org/10.1126/science.1135303

    Article  CAS  PubMed  Google Scholar 

  28. Z Peralta-Inga P Lane JS Murray 2003 Characterization of surface electrostatic potentials of some (5,5) and ( n,1) carbon and boron/nitrogen model nanotubes Nano Lett 3 21 28 https://doi.org/10.1021/nl020222q

    Article  CAS  Google Scholar 

  29. P Politzer P Lane JS Murray MC Concha 2005 Comparative analysis of surface electrostatic potentials of carbon, boron/nitrogen and carbon/boron/nitrogen model nanotubes J Mol Model 11 1 7 https://doi.org/10.1007/s00894-004-0202-0

    Article  CAS  PubMed  Google Scholar 

  30. M Noei AA Peyghan 2013 A DFT study on the sensing behavior of a BC2N nanotube toward formaldehyde J Mol Model 19 3843 3850 https://doi.org/10.1007/s00894-013-1922-9

    Article  CAS  PubMed  Google Scholar 

  31. CJ Rupp J Rossato RJ Baierle 2009 First principles study of Si-doped BC2N nanotubes J Chem Phys 130 114710 https://doi.org/10.1063/1.3089357

    Article  CAS  PubMed  Google Scholar 

  32. Frisch M , Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B (2009) Gaussian 09, Revision A.1

  33. Y Zhao DG Truhlar 2008 The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function Theor Chem Acc 120 215 241 https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  34. AD McLean GS Chandler 1980 Contracted Gaussian basis sets for molecular calculations: I—second row atoms, Z=11-18 J Chem Phys 72 5639 5648 https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  35. AH Pakiari 2017 Geometric and electronic structures of vanadium sub-nano clusters, Vn (n = 2–5), and their adsorption complexes with CO and O2 Ligands: a DFT-NBO study Phys Chem Res 5 601 615 https://doi.org/10.22036/pcr.2017.80624.1364

    Article  CAS  Google Scholar 

  36. J Jellinek 1999 Theory of atomic and molecular clusters Springer Berlin

    Book  Google Scholar 

  37. RG Parr 1989 Density-functional theory of atoms and molecules Oxford University Press New York

    Google Scholar 

  38. RS Mulliken 1934 A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities J Chem Phys 2 782 793 https://doi.org/10.1063/1.1749394

    Article  CAS  Google Scholar 

  39. JP Foster F Weinhold 1980 Natural hybrid orbitals J Am Chem Soc 102 7211 7218 https://doi.org/10.1021/ja00544a007

    Article  CAS  Google Scholar 

  40. AE Reed RB Weinstock F Weinhold 1985 Natural population analysis J Chem Phys 83 735 746 https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  41. T Kar M Čuma S Scheiner 1998 Structure, stability, and bonding of BC2N: an ab initio study J Phys Chem A 102 10134 10141 https://doi.org/10.1021/jp982424+

    Article  CAS  Google Scholar 

  42. Z Zhou J Zhao X Gao 2005 Do composite single-walled nanotubes have enhanced capability for lithium storage? Chem Mater 17 992 1000 https://doi.org/10.1021/cm048746+

    Article  CAS  Google Scholar 

  43. MO Watanabe S Itoh K Mizushima T Sasaki 1996 Bonding characterization of BC 2 N thin films Appl Phys Lett 68 2962 2964 https://doi.org/10.1063/1.116369

    Article  CAS  Google Scholar 

  44. D Golberg P Dorozhkin Y Bando 2002 Semiconducting B-C–N nanotubes with few layers Chem Phys Lett 359 220 228 https://doi.org/10.1016/S0009-2614(02)00536-5

    Article  CAS  Google Scholar 

  45. S Mukhopadhyay RH Scheicher R Pandey SP Karna 2011 Sensitivity of boron nitride nanotubes toward biomolecules of different polarities J Phys Chem Lett 2 2442 2447 https://doi.org/10.1021/jz2010557

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlolah Eshghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4486 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshghi, F., Ghahramani, Z., Ghoreishi, R. et al. Improvement of floxuridine anti-cancer adsorption on boron carbonitride nanotubes with iron doping: a theoretical study. Theor Chem Acc 140, 119 (2021). https://doi.org/10.1007/s00214-021-02823-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02823-z

Keywords

Navigation