Skip to main content
Log in

Investigating an efficient and accurate protocol for sampling structures from molecular dynamics simulations: a close look by different wavelet families

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations are widely used to predict the behavior of molecular systems over time. However, one of the significant challenges of MD simulations is how to treat the thousands of configurations obtained from calculations, since the number of the quantum calculations (QM) required for evaluating electronic parameters is too high and, sometimes, computationally impracticable. Thus, an efficient and accurate sampling protocol is essential for combining classical MD and QM calculations. In this article, based on the OWSCA method, 93 wavelet signals were analyzed in order to further refine the method and identify the best wavelet family for [Fe(H2O)6]2+ and [Mn(H2O)6]2+ complexes in solution. Our results point out that the bior1.3 was the best wavelet; values closest to the experimental data were obtained for both studied systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Namba AM, Silva VB, Silva CHTP (2008) Dinâmica molecular: teoria e aplicações em planejamento de fármacos. Eclética Química 33:13–23. https://doi.org/10.1590/S0100-46702008000400002

    Article  CAS  Google Scholar 

  2. Alonso H, Bliznyuk AA, Gready JE (2006) Combining docking and molecular dynamic simulations in drug design. Med Res Rev 26:531–568. https://doi.org/10.1002/med.20067

    Article  CAS  PubMed  Google Scholar 

  3. U. Burkert NLA, (1982) Molecular mechanics, molecular mechanics. ACS. Monogr. https://doi.org/10.1002/jcc.540040420

    Article  Google Scholar 

  4. Lipkowitz K (1983) Molecular mechanics. J Comput Chem 4:605–605. https://doi.org/10.1002/jcc.540040420

    Article  Google Scholar 

  5. Adcock SA, McCammon JA (2006) Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106:1589–1615. https://doi.org/10.1021/cr040426m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gelpi J, Hospital A, Goñi R, Orozco M (2015) Molecular dynamics simulations: advances and applications. Adv Appl Bioinforma Chem 8:37–47. https://doi.org/10.2147/AABC.S70333

    Article  Google Scholar 

  7. Persidis A (1998) Proteomics. Nat Biotechnol 16:393–394. https://doi.org/10.1038/nbt0498-393

    Article  CAS  PubMed  Google Scholar 

  8. Snow CD, Sorin EJ, Rhee YM, Pande VS (2005) How well can simulation predict protein folding kinetics and thermodynamics? Annu Rev Biophys Biomol Struct 34:43–69. https://doi.org/10.1146/annurev.biophys.34.040204.144447

    Article  CAS  PubMed  Google Scholar 

  9. Gonçalves MA, Santos LS, Prata DM et al (2017) Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: application to thermal and solvent effects of MRI probes. Theor Chem Acc 136:1–13. https://doi.org/10.1007/s00214-016-2037-z

    Article  CAS  Google Scholar 

  10. Gonçalves MA, Peixoto FC, Da Cunha EFF, Ramalho TC (2014) Dynamics, NMR parameters and hyperfine coupling constants of the Fe3O4(100)–water interface: Implications for MRI probes. Chem Phys Lett 609:88–92. https://doi.org/10.1016/j.cplett.2014.06.030

    Article  CAS  Google Scholar 

  11. Coutinho K, Georg HCC, Fonseca TLL et al (2007) An efficient statistically converged average configuration for solvent effects. Chem Phys Lett 437:148–152. https://doi.org/10.1016/j.cplett.2007.02.012

    Article  CAS  Google Scholar 

  12. Coutinho K, Canuto S, Zerner MC (2000) Monte Carlo-quantum mechanics study of the solvatochromic shifts of the lowest transition of benzene. J Chem Phys 112:9874–9880. https://doi.org/10.1063/1.481624

    Article  CAS  Google Scholar 

  13. Coutinho K, Canuto S (1997) Solvent effects from a sequential monte carlo quantum mechanical approach. Elsevier. 28(89):105. https://doi.org/10.1016/S0065-3276(08)60209-9

    Article  Google Scholar 

  14. Daura X, Gademann K, Jaun B et al (1999) Peptide folding: When simulation meets experiment. Angew Chemie - Int Ed 38:236–240. https://doi.org/10.1002/(sici)1521-3773(19990115)38:1/2%3c236::aid-anie236%3e3.0.co;2-m

    Article  CAS  Google Scholar 

  15. Shao J, Tanner SW, Thompson N, Cheatham TE (2007) Clustering Molecular Dynamics Trajectories: 1. Characterizing the Performance of Different Clustering Algorithms. J Chem Theory Comput 3:2312–2334. https://doi.org/10.1021/ct700119m

    Article  CAS  PubMed  Google Scholar 

  16. De Paris R, Quevedo CV, Ruiz DD et al (2015) Clustering molecular dynamics trajectories for optimizing docking experiments. Comput Intell Neurosci 2015:1–9. https://doi.org/10.1155/2015/916240

    Article  Google Scholar 

  17. Susnow R, Schutt C, Rabitz H (1994) Principal component analysis of dipeptides. J Comput Chem 15:963–980. https://doi.org/10.1002/jcc.540150906

    Article  CAS  Google Scholar 

  18. Sittel F, Jain A, Stock G (2014) Principal component analysis of molecular dynamics: on the use of cartesian vs. internal coordinates. J Chem Phys 141:014111–014119. https://doi.org/10.1063/1.4885338

    Article  CAS  PubMed  Google Scholar 

  19. Mancini DT, Souza EF, Caetano MS, Ramalho TC (2014) 99Tc NMR as a promising technique for structural investigation of biomolecules: theoretical studies on the solvent and thermal effects of phenylbenzothiazole complex. Magn Reson Chem 52:129–137. https://doi.org/10.1002/mrc.4043

    Article  CAS  PubMed  Google Scholar 

  20. Chiariello MG, Donati G, Rega N (2020) Time-resolved vibrational analysis of excited state ab initio molecular dynamics to understand photorelaxation: the case of the pyranine photoacid in aqueous solution. J Chem Theory Comput 16:6007–6013. https://doi.org/10.1021/acs.jctc.0c00810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Donati G, Petrone A, Caruso P, Rega N (2018) The mechanism of a green fluorescent protein proton shuttle unveiled in the time-resolved frequency domain by excited state: Ab initio dynamics. Chem Sci 9:1126–1135. https://doi.org/10.1039/c7sc02803b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petrone A, Donati G, Caruso P, Rega N (2014) Understanding THz and IR signals beneath time-resolved fluorescence from excited-state ab initio dynamics. J Am Chem Soc 136:14866–14874. https://doi.org/10.1021/ja507518k

    Article  CAS  PubMed  Google Scholar 

  23. Donati G, Petrone A, Rega N (2020) Multiresolution continuous wavelet transform for studying coupled solute–solvent vibrations via ab initio molecular dynamics. Phys Chem Chem Phys 22:22645–22661. https://doi.org/10.1039/D0CP02495C

    Article  CAS  PubMed  Google Scholar 

  24. Heidari Z, Roe DR, Galindo-Murillo R et al (2016) Using wavelet analysis to assist in identification of significant events in molecular dynamics simulations. J Chem Inf Model 56:1282–1291. https://doi.org/10.1021/acs.jcim.5b00727

    Article  CAS  PubMed  Google Scholar 

  25. Muniz-Miranda F, Pagliai M, Cardini G, Schettino V (2011) Wavelet transform for spectroscopic analysis: application to diols in water. J Chem Theory Comput 7:1109–1118. https://doi.org/10.1021/ct100625e

    Article  CAS  PubMed  Google Scholar 

  26. Oppenheim G (2007) Wavelets and Their Applications

  27. Mallat S (1999) A Wavelet Tour of Signal Processing

  28. Kamada M, Toda M, Sekijima M et al (2011) Analysis of motion features for molecular dynamics simulation of proteins. Chem Phys Lett 502:241–247. https://doi.org/10.1016/j.cplett.2010.12.028

    Article  CAS  Google Scholar 

  29. Gonçalves MA, Santos LS, Peixoto FC et al (2017) Comparing structure and dynamics of solvation of different iron oxide phases for enhanced magnetic resonance imaging. ChemistrySelect 2:10136–10142. https://doi.org/10.1002/slct.201701705

    Article  CAS  Google Scholar 

  30. Gonçalves, M. A, Ramalho, C. T (2017) Agentes de Contraste para Imagem por Ressonância Magnética: Uma Revisão. Rev. Virtual Quím. 9 1511–1524. https://doi.org/10.21577/1984-6835.20170087

  31. Gonçalves MA, Ramalho TC (2020) Relaxation parameters of water molecules coordinated with Gd(III) complexes and hybrid materials based on δ-FeOOH (100) nanoparticles: A theoretical study of hyperfine inter-actions for CAs in MRI. Eclet Quim. 45:12–20. https://doi.org/10.26850/1678-4618EQJ.V45.4.2020.P12-20

  32. Pereira BTL, Silva ÉF, Gonçalves MA et al (2017) Exploring EPR parameters of 99tc complexes for designing new mri probes: coordination environment, solvent, and thermal effects on the spectroscopic properties. J Chem 2017:1–8. https://doi.org/10.1155/2017/8102812

    Article  CAS  Google Scholar 

  33. Gonçalves MA, da Cunha EFF, Peixoto FC, Ramalho TC (2015) Probing thermal and solvent effects on hyperfine interactions and spin relaxation rate of δ-FeOOH(100) and [MnH3buea(OH)]2−: Toward new MRI probes. Comput Theor Chem 1069:96–104. https://doi.org/10.1016/j.comptc.2015.07.006

    Article  CAS  Google Scholar 

  34. De Angelis C, Brizzi RF, Pellicano R (2013) Endoscopic ultrasonography for pancreatic cancer: current and future perspectives. J Gastrointest Oncol 4:220–230. https://doi.org/10.3978/j.issn.2078-6891.2013.002

    Article  PubMed  PubMed Central  Google Scholar 

  35. Esteban-Gómez D, de Blas A, Rodríguez-Blas T et al (2012) Hyperfine coupling constants on inner-sphere water molecules of Gd(III)-based MRI contrast agents. ChemPhysChem 13:3640–3650. https://doi.org/10.1002/cphc.201200417

    Article  CAS  PubMed  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, et al (2009) Gaussian 09, Revision B.01. Gaussian 09, Revis B01, Gaussian, Inc, Wallingford CT

  37. Duin V (2002) ReaxFF User Manual

  38. Aryanpour M, van Duin ACT, Kubicki JD (2010) Development of a reactive force field for iron−oxyhydroxide systems. J Phys Chem A 114:6298–6307. https://doi.org/10.1021/jp101332k

    Article  CAS  PubMed  Google Scholar 

  39. Stolojescu-crisan C, Moga S, Isar A (2010). Comparison of Wavelet Families with Application to WiMAX Traffic Forecasting. https://doi.org/10.1109/OPTIM.2010.5510403

    Article  Google Scholar 

  40. dos Reis Lino JB, Gonçalves MA, Ramalho TC (2021) Value of NMR relaxation parameters of diamagnetic molecules for quantum information processing : optimizing the coherent phase. Theor Chem Acc 140:1–7. https://doi.org/10.1007/s00214-020-02706-9

    Article  CAS  Google Scholar 

  41. Rocha WR, Coutinho K, De Almeida WB, Canuto S (2001) An efficient quantum mechanical/molecular mechanics Monte Carlo simulation of liquid water. Chem Phys Lett 335:127–133. https://doi.org/10.1016/S0009-2614(01)00024-0

    Article  CAS  Google Scholar 

  42. Van Duin ACT, Bryantsev VS, Diallo MS et al (2010) Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases. J Phys Chem A 114:9507–9514. https://doi.org/10.1021/jp102272z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang W, Van Duin ACT (2018) Improvement of the ReaxFF description for functionalized hydrocarbon/water weak interactions in the condensed phase. J Phys Chem B 122:4083–4092. https://doi.org/10.1021/acs.jpcb.8b0112

    Article  CAS  PubMed  Google Scholar 

  44. Zhang W, Van Duin ACT (2017) Second-generation ReaxFF water force field: improvements in the description of water density and oh-anion diffusion. J Phys Chem B 121:6021–6032. https://doi.org/10.1021/acs.jpcb.7b02548

    Article  CAS  PubMed  Google Scholar 

  45. Ramalho TC, Da CEFF, De ARB (2004) Solvent effects on 13 C and 15 N shielding tensors of nitroimidazoles in the condensed phase: a sequential molecular dynamics/quantum mechanics study. J Phys Condens Matter 16:6159–6170. https://doi.org/10.1088/0953-8984/16/34/015

    Article  CAS  Google Scholar 

  46. Soper AK (2000) The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem Phys 258:121–137. https://doi.org/10.1016/S0301-0104(00)00179-8

    Article  CAS  Google Scholar 

  47. Clark GNI, Cappa CD, Smith JD et al (2010) The structure of ambient water. Mol Phys 108:1415–1433. https://doi.org/10.1080/00268971003762134

    Article  CAS  Google Scholar 

  48. Harris D, Loew GH, Komornicki A (1997) Structure and relative spin-state energetics of [fe(h2o)6 ]3+ : a comparison of uhf, møller−plesset, nonlocal dft, and semiempircal indo/s calculations. J Phys Chem A 101:3959–3965. https://doi.org/10.1021/jp963296x

    Article  CAS  Google Scholar 

  49. Lepage M, Gore JC (2004) Contrast mechanisms in magnetic resonance imaging. J Phys Conf Ser 3:78–86. https://doi.org/10.1088/1742-6596/3/1/008

    Article  CAS  Google Scholar 

  50. Hedegård ED, Kongsted J, Sauer SPA (2011) Optimized basis sets for calculation of electron paramagnetic resonance hyperfine coupling constants: aug-cc-pvtz-j for the 3d atoms Sc–Zn. J Chem Theory Comput 7:4077–4087. https://doi.org/10.1021/ct200587k

    Article  CAS  PubMed  Google Scholar 

  51. Martin Kaupp, Michael Bühl VGM (2004) Calculation of NMR and EPR Parameters: Theory and Applications

  52. Hedegård ED, Kongsted J, Sauer SP (2012) Improving the calculation of electron paramagnetic resonance hyperfine coupling tensors for d-block metals. Phys Chem Chem Phys 14:10669. https://doi.org/10.1039/c2cp40969k

    Article  CAS  PubMed  Google Scholar 

  53. Yazyev OV, Helm L, Malkin VG, Malkina OL (2005) Quantum chemical investigation of hyperfine coupling constants on first coordination sphere water molecule of gadolinium(III) aqua complexes. J Phys Chem A 109:10997–11005. https://doi.org/10.1021/jp053825+

    Article  CAS  PubMed  Google Scholar 

  54. Rolla GA, Botta M, Platas-iglesias C (2013) Hyperfine coupling constants on inner-sphere water molecules of a triazacyclononane-based mn(ii) complex and related systems relevant as mri contrast agents. Inorg Chem 52:11173–11184. https://doi.org/10.1021/ic4014366

    Article  CAS  PubMed  Google Scholar 

  55. Esteban-Gómez D, Cassino C, Botta M, Platas-Iglesias C (2014) 17O and 1H relaxometric and DFT study of hyperfine coupling constants in [Mn(H2O)6]2+. RSC Adv 4:7094–7103. https://doi.org/10.1039/c3ra45721d

    Article  CAS  Google Scholar 

  56. de Lima WEA, Pereira AF, de Castro AA, da Cunha EFF, Ramalho TC (2016) Flexibility in the molecular design of acetylcholinesterase reactivators: probing representative conformations by chemometric techniques and docking/qm calculations. Lett Drug Des Discov 13:360–371. https://doi.org/10.2174/1570180812666150918191550

    Article  CAS  Google Scholar 

  57. Kuca K, Musilek K, Jun D, Zdarova-Karasova J, Nepovimova E, Soukup O, Hrabinova M, Mikler J, Franca TCC, Da Cunha EFF, de Castro AA, Valis M, Ramalho TC (2018) A newly developed oxime K203 is the most effective reactivator of tabun-inhibited acetylcholinesterase. BMC Pharmacol Toxicol 19:1–8. https://doi.org/10.1186/s40360-018-0196-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Brazilian financial agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo ao Ensino e Pesquisa de Minas Gerais (FAPEMIG), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Ministério da Defesa (CAPES/MD) for financial support, and the Federal University of Lavras (UFLA) and Minas Gerais State University (UEMG) for providing the physical infrastructure and work space. This work was also supported by excellence project FIM UHK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodorico C. Ramalho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, M.A., Júnior, A.M.G., da Cunha, E.F.F. et al. Investigating an efficient and accurate protocol for sampling structures from molecular dynamics simulations: a close look by different wavelet families. Theor Chem Acc 140, 109 (2021). https://doi.org/10.1007/s00214-021-02816-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02816-y

Keywords

Navigation