Skip to main content
Log in

Antioxidant activity of Trolox derivatives toward methylperoxyl radicals: thermodynamic and kinetic theoretical study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The thermodynamic and kinetic aspects of Trolox derivatives reactions with methylperoxyl radical CH3OO· have been explored through the density functional theory at the M05-2X/631+G(d,p) level of theory. Five reaction mechanisms have been considered in polar and nonpolar media, namely (1) hydrogen atom transfer (HAT), (2) single-electron transfer, (3) sequential proton loss electron transfer, (4) radical adduct formation and (5) sequential proton loss hydrogen atom transfer (SPLHAT). The calculated Gibbs free energies show that HAT is the thermodynamically preferred mechanism in lipid media while SPLHAT is the most favored mechanism in water. The calculated rate constants show that the antioxidant activities of the studied Trolox derivatives against the methylperoxyl radical are 14–260 times faster than that of the reference system (Trolox).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002) Free Radical Biol Med 32:1102–1115

    Article  CAS  Google Scholar 

  2. Kimura H, Sawada T, Oshima S, Kozawa K, Ishioka T, Kato M (2005) Curr Drug Targets Inflamm Allergy 4:489–495

    Article  CAS  PubMed  Google Scholar 

  3. Gardner HW (1989) Free Radical Biol Med 7:65–86

    Article  CAS  Google Scholar 

  4. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  5. Rahman K (2007) Clin Interv Aging 2:219–236

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang J, Li JZ, Lu AX, Zhang KF, Li BJ (2014) Oncol Lett 7:1159–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alho H, Leinonen J (1999) Methods Enzymol 299:3–15

    Article  CAS  PubMed  Google Scholar 

  8. Tekiner-Gulbas B, Westwell AD, Suzen S (2013) Curr Med Chem 20:4451–4459

    Article  CAS  PubMed  Google Scholar 

  9. Hertog MGL, Feskens EJM, Hollman PCH, Katan MB, Kromhout D (1993) Lancet 342:1007–1014

    Article  CAS  PubMed  Google Scholar 

  10. Eskici G, Axelsen PH (2012) Biochemistry 51:6289–6311

    Article  CAS  PubMed  Google Scholar 

  11. Somogyi A, Rosta K, Pusztai P, Tulassay Z, Nagy G (2007) Physiol Meas 28:R41–R55

    Article  PubMed  Google Scholar 

  12. Lobo V, Phatak A, Chandra N (2010) Pharmacogn Rev 4:118–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lü J, Lin PH, Yao Q, Chen C (2010) J Cel Mol Med 14:840–860

    Article  CAS  Google Scholar 

  14. Singh PP, Chandra A, Mahdi F, Ray A, Sharma P (2010) Indian J Clin Biochem 25:225–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hall C A, Cuppett S L (1997) AOCS Press, Champaign, p 2

  16. Pingaew R, Prachayasittikul S, Ruchirawat S, Prachayasittikul V (2014) Med Chem Res 23:1768–1780

    Article  CAS  Google Scholar 

  17. Tanzer JM, Slee AM, Kamay B, Scheer E (1978) Antimicrob Agents Chemother 13:1044–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Soule BP, Hyodo F, Matsumoto K, Simone NL, Cook JA, Krishna MC, Mitchell JB (2007) Free Radicals Biol Med 42:1632–1650

    Article  CAS  Google Scholar 

  19. Wattamwar P, Mo Y, Wan R, Palli R, Zhang Q, Dziubla T (2010) Adv Funct Mater 20:147–154

    Article  CAS  Google Scholar 

  20. Stanic B, Katsuyama M, Miller FJ (2010) Vasc Biol 30:2234–2241

    Article  CAS  Google Scholar 

  21. Betters JL, Criswell DS, Shanely RA, Van Gammeren D, Falk D, Deruisseau KC, Deering M, Yimlamai T, Powers SK (2004) Am J Respir Crit Care Med 170:1179–1184

    Article  PubMed  Google Scholar 

  22. Musialik M, Litwinienko G (2005) Org Lett 7:4951–4954

    Article  CAS  PubMed  Google Scholar 

  23. Farmanzadeh D, Najafi M (2016) J Serb Chem Soc 81:277–290

    Article  CAS  Google Scholar 

  24. Steenken S, Neta P (1982) J Phys Chem 86:3661–3667

    Article  CAS  Google Scholar 

  25. De Oliveira SÓYA, De Abreu Silva M, Carvalho FM, Kiametis AS, Gargano R (2020) Int J Quantum Chem

  26. Alberto ME, Russo N, Grand A, Galano A (2013) Phys Chem Chem Phys 15:4642–4650

    Article  CAS  PubMed  Google Scholar 

  27. Sies H (1997) Exp Physiol 82:291–295

    Article  CAS  PubMed  Google Scholar 

  28. Masuda T, Yamada K, Maekawa T et al (2006) Food Sci Technol Res 12:173–177

    Article  CAS  Google Scholar 

  29. Masuda T, Yamada K, Maekawa T et al (2006) J Agric Food Chem 54:6069–6074

    Article  CAS  PubMed  Google Scholar 

  30. Rose RC, Bode AM (1993) FASEB J 7:1135–1142

    Article  CAS  PubMed  Google Scholar 

  31. De Grey AND (2002) DNA Cell Biol 21:251–257

    Article  PubMed  Google Scholar 

  32. Wright JS, Carpenter DJ, McKay DJ, Ingold KU (1997) J Am Chem Soc 119:4245–4252

    Article  CAS  Google Scholar 

  33. Mazzone G, Galano A, Alvarez-Idaboy JR, Russo N (2016) J Chem Inf Model 56:662–670

    Article  CAS  PubMed  Google Scholar 

  34. Estevez L, Mosquera RA (2008) J Phys Chem A 112:10614–10623

    Article  CAS  PubMed  Google Scholar 

  35. Solar S, Solar W, Getoff N (1984) J Phys Chem 88:2091–2095

    Article  CAS  Google Scholar 

  36. Estévez L, Otero N, Mosquera RA (2010) J Phys Chem B 114:9706–9712

    Article  PubMed  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01,Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  38. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Article  PubMed  CAS  Google Scholar 

  39. Velez E, Quijano J, Notario R, Pabón E, Murillo J, Leal J, Zapata E, Alarcon GA (2009) J Phys Org Chem 22:971–977

    Article  CAS  Google Scholar 

  40. Galano A, Alvarez-Idaboy JR (2009) Org Lett 11:5114–5117

    Article  CAS  PubMed  Google Scholar 

  41. Black G, Simmie JM (2010) J Comput Chem 31:1236–1248

    CAS  PubMed  Google Scholar 

  42. Furuncuoglu T, Ugur I, Degirmenci I, Aviyente V (2010) Macromolecules 43:1823–1835

    Article  CAS  Google Scholar 

  43. Zhao Y, Truhlar DG (2008) J Phys Chem A 112:1095–1099

    Article  CAS  PubMed  Google Scholar 

  44. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  45. Beltrán FJ, Encinar JM, García-Araya JF (1993) Water Res 27:1023–1032

    Article  Google Scholar 

  46. Eyring H (1935) J Chem Phys 3:63–71

    Article  Google Scholar 

  47. Evans MG, Polanyi M (1935) Trans Faraday Soc 31:875–894

    Article  CAS  Google Scholar 

  48. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771–12800

    Article  CAS  Google Scholar 

  49. Wigner EJ (1937) J Chem Phys 5:720–725

    Article  CAS  Google Scholar 

  50. Smoluchowski MZ (1917) Phys Chem 92:129–168

    Google Scholar 

  51. Truhlar DG (1985) J Chem Educ 62:104–106

    Article  CAS  Google Scholar 

  52. Einstein A (1905) Ann Phys (Leipzig) 17:549–560

    Article  CAS  Google Scholar 

  53. Stokes GG (1903) Mathematical and physical papers, vol 3. Cambridge University Press, Cambridge, p 55

    Google Scholar 

  54. Ho J, Coote ML (2010) Theor Chem Acc 125:3–21

    Article  CAS  Google Scholar 

  55. Rebollar-Zepeda AM, Campos-Hernández T, Ramírez-Silva MT, Rojas-Hernández A, Galano A (2011) J Chem Theor Comp 7:2528–2538

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education and Scientific Research of the Algerian Government under the PRFU project (Approval No. B00L01UN130120180001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidi Mohamed Mekelleche.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saїd, A.Eh., Mekelleche, S.M. Antioxidant activity of Trolox derivatives toward methylperoxyl radicals: thermodynamic and kinetic theoretical study. Theor Chem Acc 140, 128 (2021). https://doi.org/10.1007/s00214-021-02815-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02815-z

Keywords

Navigation