Skip to main content
Log in

DFT calculation of the interplay effects between cation–π and intramolecular hydrogen bond interactions of mesalazine drug with selected transition metal ions (Mn+, Fe2+, Co+, Ni2+, Cu+, Zn2+)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory calculations are performed to determine the effect of cation-π and intramolecular hydrogen bond (IMHB) interactions on each other in the formed complexes between transition metal cations (Mn+, Fe2+, Co+, Ni2+, Cu+, Zn2+) with mesalazine drug. The strength of these interactions is evaluated by energetic, geometric, spectroscopic and topological parameters to explore the mutual effects between them. Atomic charge distribution and characterization of bonds in the studied systems are investigated by natural bond orbital and atoms in molecules analyses, respectively. Our findings show that the presence of IMHB increases the energies of cation–π interaction for the divalent complexes and Co+ complex, while for the other monovalent complexes the reverse process is observed. The results also display that, in most cases, the coexistence of IMHB and cation–π interactions decreases the IMHB strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iacucci M, de Silva Sh, Ghosh S (2010) Mesalazine in inflammatory bowel disease: a trendy topic once again? Can J Gastroenterol 24:127–133

    Article  PubMed  PubMed Central  Google Scholar 

  2. Azad Khan AK, Piris J, Truelove SC (1977) An experiment to determine the active therapeutic moiety of sulphasalazine. Lancet 2:892–895

    Article  CAS  PubMed  Google Scholar 

  3. Hanauer SB (1990) Topical and Oral Aminosalicylates. In: Peppercorn M (ed) The Management of Inflammatory Bowel Disease: New Medical and Surgical Approaches. Marcel Dekker, Philadelphia

    Google Scholar 

  4. Miles AM, Grisham MB (1995) Antioxidant properties of 5-aminosalicylic acid: potential mechanism for its protective effect in ulcerative colitis. Adv Exp Med Biol 371B:1317–1321

    CAS  PubMed  Google Scholar 

  5. Muller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–167

    Article  CAS  PubMed  Google Scholar 

  6. Strekowski L, Wilson B (2007) Noncovalent interactions with DNA: an overview. Mutat Res 623:3–13

    Article  CAS  PubMed  Google Scholar 

  7. Esrafili MD, Behzadi H, Hadipour NL (2007) Influence of N–HO and O–HO hydrogen bonds on the 17O, 15N and 13C chemical shielding tensors in crystalline acetaminophen: a density functional theory study. Biophys Chem 128:38–45

    Article  CAS  PubMed  Google Scholar 

  8. Grimme S (2008) Do special noncovalent π–π stacking interactions really exist? Angew Chem Int Ed 47:3430–3434

    Article  CAS  Google Scholar 

  9. Esrafili MD, Behzadi H, Beheshtian J, Hadipour NL (2008) Theoretical 14N nuclear quadrupole resonance parameters for sulfa drugs: Sulfamerazine and sulfathiazole. J Mol Graph Model 27:326–331

    Article  CAS  PubMed  Google Scholar 

  10. Jeffrey GA (1997) An Introduction to Hydrogen Bonding. Oxford University Press, New York

    Google Scholar 

  11. Desiraju GR (2002) Hydrogen bridges in crystal engineering: interactions without borders. Acc Chem Res 35:565–573

    Article  CAS  PubMed  Google Scholar 

  12. Pauling L (1939) The Nature of the Chemical Bond. Cornell University Press, Ithaca, NY

    Google Scholar 

  13. Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76

    Article  CAS  Google Scholar 

  14. Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  15. Reddy AS, Sastry GN (2005) Cation [M = H+, Li+, Na+, K+, Ca2+, Mg2+, NH4+, and NMe4+] interactions with the aromatic motifs of naturally occurring amino acids: a theoretical study. J Phys Chem A 109:8893–8903

    Article  CAS  PubMed  Google Scholar 

  16. Gokel GW, De Wall SL, Meadows ES (2000) Experimental evidence for alkali metal cation−π interactions. Eur J Org Chem 2000:2967–2978

    Article  Google Scholar 

  17. Gokel GW, Barbour LJ, De Wall SL, Meadows ES (2001) Macrocyclic polyethers as probes to assess and understand alkali metal cation-π interactions. Coord Chem Rev 222:127–154

    Article  CAS  Google Scholar 

  18. Ma JC, Dougherty DA (1997) The cation–π interaction. Chem Rev 97:1303–1324

    Article  CAS  PubMed  Google Scholar 

  19. Subha Mahadevi A, Narahari Sastry G (2013) Cation−π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 113:2100–2138

    Article  PubMed  CAS  Google Scholar 

  20. Shinkai S, Ikeda M, Sugasaki A, Takeuchi M (2001) Positive allosteric systems designed on dynamic supramolecular scaffolds: toward switching and amplification of guest affinity and selectivity. Acc Chem Res 34:494–503

    Article  CAS  PubMed  Google Scholar 

  21. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42:1210–1250

    Article  CAS  Google Scholar 

  22. Mulder A, Huskens J, Reinhoudt DN (2004) Multivalency in supramolecular chemistry and nanofabrication. Org Biomol Chem 2:3409–3424

    Article  CAS  PubMed  Google Scholar 

  23. Estarellas C, Escudero D, Frontera A, Quiñonero D, Deyá PM (2009) Theoretical ab initio study of the interplay between hydrogen bonding, cation–π and π–π interactions. Theor Chem Acc 122:325–332

    Article  CAS  Google Scholar 

  24. Estarellas C, Frontera A, Quiñonero D, Deyá PM (2009) Interplay between cation–π and hydrogen bonding interactions: are non-additivity effects additive? Chem Phys Lett 479:316–320

    Article  CAS  Google Scholar 

  25. Escudero D, Frontera A, Quiñonero D, Deyá PM (2008) Interplay between cation-π and hydrogen bonding interactions. Chem Phys Lett 456:257–261

    Article  CAS  Google Scholar 

  26. Nowroozi A, Ebrahimi A, Rezvani Rad O (2018) Mutual effects of the cation-π, anion-π and intramolecular hydrogen bond in the various complexes of 1,3,5-triamino-2,4,6-trinitrobenzene with some cations (Li+, Na+, K+, Mg2+, Ca2+) and anions (F˗, Cl˗, Br˗). Struct Chem 29:129–137

    Article  CAS  Google Scholar 

  27. Vijay D, Zipse H, Narahari Sastry G (2008) On the cooperativity of cation-π and hydrogen bonding interactions. J Phys Chem B 112:8863–8867

    Article  CAS  PubMed  Google Scholar 

  28. Li Q, Li W, Cheng J, Gong B, Sun J (2008) Effect of methyl group on the cooperativity between cation-π interaction and NH...O hydrogen bonding. J Mol Struct Theochem 867:107–110

    Article  CAS  Google Scholar 

  29. Bertran J, Rodriguez-Santiago L, Sodupe M (1999) The different nature of bonding in Cu+-glycine and Cu2+-glycine. J Phys Chem B 103:2310–2317

    Article  CAS  Google Scholar 

  30. Rodriguez-Santiago L, Sodupe M, Tortajada J (2001) Gas-phase reactivity of Ni+ with glycine. J Phys Chem A 105:5340–5347

    Article  CAS  Google Scholar 

  31. Rogalewicz F, Ohanessian G, Gresh N (2000) Interaction of neutral and zwitterionic glycine with Zn2+ in gas phase: ab initio and SIBFA molecular mechanics calculations. J Comput Chem 21:963–973

    Article  CAS  Google Scholar 

  32. Ai H, Bu Y, Li P, Li Z, Hu X, Chen Z (2005) Geometry and binding properties of different multiple-state glycine–Fe+/Fe2+ complexes. J Phys Org Chem 18:26–34

    Article  CAS  Google Scholar 

  33. Rodgers MT, Armentrout PB (2004) A thermodynamic “vocabulary” for metal ion interactions in biological systems. Acc Chem Res 37:989–998

    Article  CAS  PubMed  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford, CT, USA

    Google Scholar 

  35. Cohen AJ, Sanchez PM, Yang W (2008) Insights into current limitations of density functional theory. Science 321:792–794

    Article  CAS  PubMed  Google Scholar 

  36. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  37. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540

    Article  CAS  Google Scholar 

  38. Savin A, Flad HJ (1995) Density functionals for the Yukawa electron-electron interaction. Int J Quantum Chem 56:327–332

    Article  CAS  Google Scholar 

  39. Chai JD, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106

    Article  PubMed  CAS  Google Scholar 

  40. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  41. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the diferences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  42. Bader RFW (1990) Atoms in Molecules: A Quantum Theory. Oxford University Press, New York

    Google Scholar 

  43. BieglerKönig F, Schönbohm J (2002) Update of the AIM2000-program for atoms in molecules. J Comput Chem 23:1489–1494

    Article  CAS  Google Scholar 

  44. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  45. Glendening ED, Reed AE, Carpenter JE, Weinhold F (2009) NBO, version 3.1 (in). Gaussian Inc, Pittsburg, CT

    Google Scholar 

  46. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  47. Chattaraj PK, Poddar A (1999) Molecular reactivity in the ground and excited electronic states through density-dependent local and global reactivity parameters. J Phys Chem A 103:8691–8699

    Article  CAS  Google Scholar 

  48. Parr RG, Lv S, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  49. Sen KD, Jorgensen CK (1987) Electronegativity, Structure and Bonding. Springer Verlag, New York

    Google Scholar 

  50. Koopmans T (1933) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines atoms. Physica 1:104–113

    Article  CAS  Google Scholar 

  51. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electrons densities. Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  52. Palusiak M, Simon S, Sola M (2006) Interplay between intramolecular resonanceassisted hydrogen bonding and aromaticity in o-hydroxyaryl aldehydes. J Org Chem 71:5241–5248

    Article  CAS  PubMed  Google Scholar 

  53. Güell G, Poater J, Luis JM, Mó O, Yáñez M, Sola M (2005) Aromaticity analysis of Lithium Cation/π complexes of aromatic systems. Chem Phys Chem 6:2552–2561

    Article  PubMed  CAS  Google Scholar 

  54. Grabowski SJ, Sokalski WA, Dyguda E, Leszczyński J (2006) Quantitative classification of covalent and noncovalent H-bonds. J Phys Chem B 110:6444–6446

    Article  CAS  PubMed  Google Scholar 

  55. Dziembowska T (1990) Intramolecular Hydrogen Bonding. Akademia Rolnicza, Szczecin

    Google Scholar 

  56. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264

    Article  CAS  PubMed  Google Scholar 

  57. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  58. Parra RD, Ohlssen J (2008) Cooperativity in intramolecular bifurcated hydrogen bonds: an Ab initio study. J Phys Chem A 112:3492–3498

    Article  CAS  PubMed  Google Scholar 

  59. Ziółkowski M, Grabowski SJ, Leszczynski J (2006) Cooperativity in hydrogen-bonded interactions: ab initio and “atoms in molecules” analyses. J Phys Chem A 110:6514–6521

    Article  PubMed  CAS  Google Scholar 

  60. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  61. Cremer D, Kraka E (1984) Chemical bonds without bonding electron density - does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed Engl 23:627–628

    Article  Google Scholar 

  62. Valinia F, Shojaei N, Ojaghloo P (2019) Novel 1-(4-chlorophenyl)-3-(2-ethoxyphenyl) triazene ligand: synthesis, X-ray crystallographic studies, spectroscopic characterization and DFT calculations. Chem Rev Lett 2:90–97

    Google Scholar 

  63. Fukui K (1982) Role of Frontier orbitals in chemical reactions. Science 218:747–754

    Article  CAS  PubMed  Google Scholar 

  64. Kosar B, Albayrak C (2011) Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino) methyl] phenol. Spectrochim Acta A 78:160–167

    Article  CAS  Google Scholar 

  65. Morell C, Labet V, Grand A, Chermette H (2009) Minimum electrophilicity principle: an analysis based upon the variation of both chemical potential and absolute hardness. Phys Chem Chem Phys 11:3417–3423

    Article  CAS  PubMed  Google Scholar 

  66. Majedi S, Behmagham F, Vakili M (2020) Theoretical view on interaction between boron nitride nanostructures and some drugs. J Chem Lett 1:19–24

    Google Scholar 

  67. Rauf HG, Majedi S, Mahmood EA, Sofi M (2019) Adsorption behavior of the Al- and Ga-doped B12N12 nanocages on COn (n=1,2) and HnX (n=2,3 and X=O, N): a comparative study. Chem Rev Lett 2:140–150

    Google Scholar 

  68. Mohamed RA, Adamu U, Sani U, Gideon SA, Yakub A (2019) Thermodynamics and kinetics of 1-fluoro-2-methoxypropane with Bromine monoxide radical (BrO•). Chem Rev Lett 2:107–117

    Google Scholar 

  69. Jalali Sarvestani MR, Ahmadi R, Farhang Rik B (2020) Procarbazine adsorption on the surface of single walled carbon nanotube: DFT studies. Chem Rev Lett 3:175–179

    Google Scholar 

  70. Hamer GK, Peat IR, Reynolds WF (1973) Investigations of substituent effects by nuclear magnetic resonance spectroscopy and all-valence electron molecular orbital calculations. II. 4-Substituted α-methylstyrenes and α-t-butylstyrenes. Can J Chem 51:915–926

    Article  CAS  Google Scholar 

  71. Behmagham F, Asadi Z, Jamale Sadeghi Y (2018) Synthesis, spectroscopic and computational investigation of bis (3-methoxyphenylthio) ethyl) naphthalene. Chem Rev Lett 1:68–76

    Google Scholar 

Download references

Acknowledgements

The support of this work by Vali-e-Asr University of Rafsanjan is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marziyeh Mohammadi.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Alirezapour, F. & Khanmohammadi, A. DFT calculation of the interplay effects between cation–π and intramolecular hydrogen bond interactions of mesalazine drug with selected transition metal ions (Mn+, Fe2+, Co+, Ni2+, Cu+, Zn2+). Theor Chem Acc 140, 104 (2021). https://doi.org/10.1007/s00214-021-02813-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02813-1

Keywords

Navigation