Skip to main content
Log in

Probing the effect of carbon doping on structures, properties, and stability of magnesium clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The geometrical structures, energetic and electronic properties, and stability of the carbon-doped magnesium clusters have been systematically investigated and compared with those of host magnesium clusters. The evolutions of binding energy, the second difference in energy, dissociation energy, adsorption energy of C, HOMO–LUMO gap, vertical ionization potential, and hardness with the size of the MgnC (n = 1–12) clusters have been obtained and analyzed. Results reveal that most lowest lying MgnC clusters are in triplet state, which is different from the situation of pure magnesium clusters or carbon-doped Ben clusters. The MgnC cluster begins to favor an endohedral geometry when the number of Mg atoms exceeds three, and the transition from planar to three-dimensional structures is found to occur at Mg3C. Among the studied series, the Mg8C and Mg11C clusters have relatively higher electronic stability and are less likely to dissociate. Their special stability can be rationalized from the perspective of cluster shell model. In particular, Mg11C with 26 valence electrons can also be considered as a magic cluster featuring a closed-shell configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nanna ME, Bierwagen GP (2004) Mg-Rich coatings: a new paradigm for Cr-free corrosion protection of Al aerospace alloys. JCT Res 1:69–80

    CAS  Google Scholar 

  2. Pollock TM (2010) Weight loss with magnesium alloys. Science 328:986–987

    Article  CAS  PubMed  Google Scholar 

  3. Kulekci MK (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39:851–865

    Article  Google Scholar 

  4. Kim S-H, You B-S, Yim CD et al (2005) Texture and microstructure changes in asymmetrically hot rolled Az31 magnesium alloy sheets. Mater Lett 59:3876–3880

    Article  CAS  Google Scholar 

  5. Yoo J, Aksimentiev A (2012) Improved parametrization of Li+, Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems. J Phys Chem Lett 3:45–50

    Article  CAS  Google Scholar 

  6. Zhang E, Xu L, Yang K (2005) Formation by ion plating of Ti-coating on pure Mg for biomedical applications. Scripta Mater 53:523–527

    Article  CAS  Google Scholar 

  7. Kong F, Hu Y (2014) Density functional theory study of small X-doped Mg N (X= Fe Co, Ni, N= 1–9) bimetallic clusters: equilibrium structures, stabilities, electronic and magnetic properties. J Mol Model 20:1–10

    Article  Google Scholar 

  8. Er S, de Wijs GA, Brocks G (2010) Tuning the hydrogen storage in magnesium alloys. J Phys Chem Lett 1:1982–1986

    Article  CAS  Google Scholar 

  9. Dornheim M, Doppiu S, Barkhordarian G et al (2007) Hydrogen storage in magnesium-based hydrides and hydride composites. Scripta Mater 56:841–846

    Article  CAS  Google Scholar 

  10. Harder S, Spielmann J, Intemann J et al (2011) Hydrogen storage in magnesium hydride: the molecular approach. Angew Chem Int Ed 50:4156–4160

    Article  CAS  Google Scholar 

  11. Webb C (2015) A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. J Phys Chem Solids 84:96–106

    Article  CAS  Google Scholar 

  12. Diederich T, Döppner T, Braune J et al (2001) Electron delocalization in magnesium clusters grown in supercold helium droplets. Phys Rev Lett 86:4807

    Article  CAS  PubMed  Google Scholar 

  13. Jellinek J, Acioli PH (2002) Magnesium clusters: structural and electronic properties and the size-induced nonmetal-to-metal transition. J Phys Chem A 106:10919–10925

    Article  CAS  Google Scholar 

  14. Thomas OC, Zheng W, Xu S et al (2002) Onset of metallic behavior in magnesium clusters. Phys Rev Lett 89:213403

    Article  PubMed  CAS  Google Scholar 

  15. Köhn A, Weigend F, Ahlrichs R (2001) Theoretical study on clusters of magnesium. Phys Chem Chem Phys 3:711–719

    Article  Google Scholar 

  16. Belyaev SN, Panteleev SV, Ignatov SK et al (2016) Structural, electronic, thermodynamic and spectral properties of Mgn (N= 2–31) clusters. A Dft Study Comput Theor Chem 1079:34–46

    Article  CAS  Google Scholar 

  17. Shen D, Kong C-P, Jia R et al (2015) Investigation of properties of Mg N clusters and their hydrogen storage mechanism: a study based on dft and a global minimum optimization method. J Phys Chem A 119:3636–3643

    Article  CAS  PubMed  Google Scholar 

  18. Lyalin A, Solov’yov IA, Solov’yov AV et al (2003) Evolution of the electronic and ionic structure of Mg clusters with increase in cluster size. Phys Rev A 67:063203

    Article  CAS  Google Scholar 

  19. Zhang J-M, Duan Y-N, Xu K-W et al (2008) Ab initio calculation of neutral and singly charged Mgn (n≤ 11) clusters. Phys B 403:3119–3124

    Article  CAS  Google Scholar 

  20. Zeng T, He Y (2018) Scaling of the self-energy correction to the homo-lumo gap with magnesium cluster size and its potential for extrapolating to larger magnesium clusters. J Appl Phys 124:044305

    Article  CAS  Google Scholar 

  21. Zhai Q-G, Bu X, Zhao X et al (2016) Advancing magnesium-organic porous materials through new magnesium cluster chemistry. Cryst Growth Des 16:1261–1267

    Article  CAS  Google Scholar 

  22. Medel VM, Reber AC, Ulises Reveles J et al (2012) Metallic and molecular orbital concepts in xmg8 clusters, X= Be-F. J Chem Phys 136:134311

    Article  PubMed  CAS  Google Scholar 

  23. Ge G-X, Han Y, Wan J-G et al (2013) First-principles prediction of magnetic superatoms in 4 d-transition-metal-doped magnesium clusters. J Chem Phys 139:174309

    Article  PubMed  CAS  Google Scholar 

  24. Li Z, Zhao Z, Zhou Z et al (2017) First-principles calculations on small Mgnzn and Mgn-1zn2 clusters: structures, stability, electronic properties. Mater Chem Phys 199:585–590

    Article  CAS  Google Scholar 

  25. Xue-Feng C, Yan Z, Kai-Tian Q et al (2010) Density functional theory study on Ni-Doped Mgnni (N= 1–7) clusters. Chinese Phys B 19:033601

    Article  Google Scholar 

  26. Xia X, Kuang X, Lu C et al (2016) Deciphering the structural evolution and electronic properties of magnesium clusters: an aromatic homonuclear metal Mg17 cluster. J Phys Chem A 120:7947–7954

    Article  CAS  PubMed  Google Scholar 

  27. Aihara J-i (1980) Exact relationship between resonance energies and ring currents of aromatic annulenes. Bull Chem Soc Jpn 53:1163–1164

    Article  CAS  Google Scholar 

  28. Haddon R (1979) Unified theory of resonance energies, ring currents, and aromatic character in the (4n+ 2). Pi.-electron annulenes. J Am Chem Soc 101:1722–1728

    Article  CAS  Google Scholar 

  29. Hückel E (1932) Quantentheoretische Beiträge Zum Problem Der Aromatischen Und Ungesättigten Verbindungen. Iii Zeitschrift für Physik 76:628–648

    Article  Google Scholar 

  30. Hückel E (1931) Quantentheoretische Beiträge Zum Benzolproblem. Z Phys 70:204–286

    Article  Google Scholar 

  31. Kurakevych OO, Strobel TA, Kim DY et al (2013) Innenrücktitelbild: synthesis of Mg2c: a magnesium methanide (Angew. Chem. 34/2013). Angew Chemie 125:9219–9219

    Article  Google Scholar 

  32. Strobel TA, Kurakevych OO, Kim DY et al (2014) Synthesis of Β-Mg2c3: a monoclinic high-pressure polymorph of magnesium sesquicarbide. Inorg Chem 53:7020–7027

    Article  CAS  PubMed  Google Scholar 

  33. Li T, Ju W, Liu H et al (2014) First-principles investigation of the electronic and lattice vibrational properties of Mg2c. Comp Mater Sci 93:234–238

    Article  CAS  Google Scholar 

  34. Lu T (2016) Molclus Program, Version 1.3.5. http://www.keinsci.com/research/molclus.html

  35. Li Y-F, Zhang F-Q, Ren F-Q et al (2018) Geometries, stabilities and electronic properties of bimetallic Al N Pd M (N= 1–10, M= 1, 2) clusters. Int J Mod Phys B 32:1850073

    Article  CAS  Google Scholar 

  36. Lu QL, Luo QQ, De Li Y et al (2018) Structure and properties of B 20 Si−∕ 0∕+ clusters. Eur Phys J D 72:1–6

    Article  CAS  Google Scholar 

  37. Lu QL, Luo QQ, Huang SG et al (2016) Structural transition of (InSb)N clusters at N= 6–10. Chem Phys Lett 663:128–132

    Article  CAS  Google Scholar 

  38. Ren F-Q, Zhang F-Q, Li Y-F et al (2017) Density Functional study of the structural, stability, magnetic properties and chirality of small-sized Al X Zr Y (X+ Y≤ 9) alloy clusters. J Theor Comput Chem 16:1750058

    Article  CAS  Google Scholar 

  39. Grimme XTB_4.6. A development of the University of Bonn, Germany. Available from https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/xtb/xtb

  40. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A.02. Gaussian Inc, Wallingford CT

    Google Scholar 

  41. Dennington R, Keith T, Millam J (2009) Gaussview, Version 5. Semichem Inc, Shawnee Mission, KS

    Google Scholar 

  42. Zhang DD, Wu D, Yang H et al (2017) The influence of carbon doping on the structures, properties, and stability of beryllium clusters. Eur J Inorg Chem 2017:2428–2434

    Article  CAS  Google Scholar 

  43. Zhang S, Zhang Y, Lu Z et al (2016) Probing the structures, stabilities, and electronic properties of neutral and charged carbon-doped lithium Cli N Μ (N= 2–20, Μ= 0,±1) clusters from unbiased calypso method. J Mater Sci 51:9440–9454

    Article  CAS  Google Scholar 

  44. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  45. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  CAS  Google Scholar 

  46. Röthlisberger U, Andreoni W (1991) Structural and electronic properties of sodium microclusters (N= 2–20) at low and high temperatures: new insights from abinitio molecular dynamics studies. J Chem Phys 94:8129–8151

    Article  Google Scholar 

  47. Barnett R, Landman U, Rajagopal G (1991) Patterns and barriers for fission of charged small metal clusters. Phys Rev Lett 67:3058

    Article  CAS  PubMed  Google Scholar 

  48. Thomas O, Zheng W-J, Lippa T et al (2001) In search of theoretically predicted magic clusters: lithium-doped aluminum cluster anions. J Chem Phys 114:9895–9900

    Article  CAS  Google Scholar 

  49. Khanna ZS, Rao B, Jena P (2002) Electronic signature of the magicity and ionic bonding in Al 13 X (X= Li–K) clusters. Phys Rev B 65:125105

    Article  CAS  Google Scholar 

  50. Knight W, Clemenger K, de Heer WA et al (1984) Electronic shell structure and abundances of sodium clusters. Phys Rev Lett 52:2141–2143

    Article  CAS  Google Scholar 

  51. Leuchtner R, Harms A, Castleman A Jr (1989) Thermal metal cluster anion reactions: behavior of aluminum clusters with oxygen. J Chem Phys 91:2753–2754

    Article  CAS  Google Scholar 

  52. Sun W-M, Li Y, Wu D et al (2012) Evolution of the structural and electronic properties of beryllium-doped aluminum clusters: comparison with neutral and cationic aluminum clusters. Phys Chem Chem Phys 14:16467–16475

    Article  CAS  PubMed  Google Scholar 

  53. Liu L, Li P, Yuan L-F et al (2016) From isosuperatoms to isosupermolecules: new concepts in cluster science. Nanoscale 8:12787–12792

    Article  CAS  PubMed  Google Scholar 

  54. Yang H, Wu D, He H-M et al (2020) Distinctive characteristics of Al7li: a superatom counterpart of group Iva elements. Inorg Chem 59:14093–14100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21573089, 51872057, 21673093), the "13th Five-Year" Science and Technology Research Project of Jilin provincial education department (Grant Nos. JJKH20190117KJ, JJKH20190121KJ), and the Natural Science Foundation of FuJian Province (2020J01147). Chen W thanks the supports from Minjiang Scholar and startup fund for high-level talent at Fujian Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Li or Wei Chen.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 17996 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CM., Wu, D., Tian, X. et al. Probing the effect of carbon doping on structures, properties, and stability of magnesium clusters. Theor Chem Acc 140, 111 (2021). https://doi.org/10.1007/s00214-021-02810-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02810-4

Keywords

Navigation