Skip to main content
Log in

Clifford boundary conditions for periodic systems: the Madelung constant of cubic crystals in 1, 2 and 3 dimensions

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work we demonstrate the robustness of a real-space approach for the treatment of infinite systems described with periodic boundary conditions that we have recently proposed (Tavernier et al in J Phys Chem Lett 17:7090, 2000). In our approach we extract a fragment, i.e., a supercell, out of the infinite system, and then modifying its topology into the that of a Clifford torus which is a flat, finite and border-less manifold. We then renormalize the distance between two points by defining it as the Euclidean distance in the embedding space of the Clifford torus. With our method we have been able to calculate the reference results available in the literature with a remarkable accuracy, and at a very low computational effort. In this work we show that our approach is robust with respect to the shape of the supercell. In particular, we show that the Madelung constants converge to the same values but that the convergence properties are different. Our approach scales linearly with the number of atoms. The calculation of Madelung constants only takes a few seconds on a laptop computer for a relative precision of about 10\(^{-6}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rudin W (1964) Principles of mathematical analysis. McGraw-Hill, New York

    Google Scholar 

  2. Evjen HM (1932) Phys Rev 39(4):675

    Article  CAS  Google Scholar 

  3. Ewald PP (1921) Ann Phys 369(3):253

    Article  Google Scholar 

  4. Darden T, York D, Pedersen L (1993) J Chem Phys 98(12):10089

    Article  CAS  Google Scholar 

  5. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103(19):8577

    Article  CAS  Google Scholar 

  6. Eastwood J, Hockney R, Lawrence D (1980) Comput Phys Commun 19:215

    Article  CAS  Google Scholar 

  7. Pippig M, Potts D (2013) SIAM J Sci Comput 35(4):C411

    Article  Google Scholar 

  8. Lindbo D, Tornberg AK (2012) J Chem Phys 136(16):164111

    Article  Google Scholar 

  9. Rokhlin V (1985) J Comp Phys 60(2):187

    Article  Google Scholar 

  10. Tavernier N, Bendazzoli GL, Brumas V, Evangelisti S, Berger JA (2020) J Phys Chem Lett 11(17):7090

    Article  CAS  Google Scholar 

  11. Valença Ferreira de Aragão E, Moreno D, Battaglia S, Bendazzoli GL, Evangelisti S, Leininger T, Suaud N, Berger JA (2019) Phys Rev B 99(20):205144

    Article  Google Scholar 

  12. Bredow T, Geudtner G, Jug K (2001) J Comput Chem 22(1):89

    Article  CAS  Google Scholar 

  13. Mamode M (2014) Bound Value Probl 2014(1):221

    Article  Google Scholar 

  14. Mamode M (2017) J Math Chem 55(3):734

    Article  CAS  Google Scholar 

  15. Madelung E (1918) Phys Z 19:524–532

    Google Scholar 

  16. Coogan C (1967) Aust J Chem 20(12):2551

    Article  CAS  Google Scholar 

  17. Gellé A, Lepetit MB (2008) J Chem Phys 128(24):244716

    Article  Google Scholar 

  18. Hojendahl K (1938) Mat Phys Medd dan Vid selsk 16(2):138

    Google Scholar 

  19. Sousa C, Casanovas J, Rubio J, Illas F (1993) J Comput Chem 14(6):680. https://doi.org/10.1002/jcc.540140608

    Article  CAS  Google Scholar 

  20. Derenzo SE, Klintenberg MK, Weber MJ (2000) J Chem Phys 112(5):2074

    Article  CAS  Google Scholar 

  21. Nijboer B, De Wette F (1957) Physica 23(1):309

    Article  CAS  Google Scholar 

  22. Glasser M, Zucker I (1980) Lattice sums. Elsevier, pp 67–139

  23. Borwein JM, Glasser ML, McPhedran RC, Wan JG, Zucker IJ (2013) Lattice sums then and now. Cambridge University Press, Cambridge

    Book  Google Scholar 

  24. Borwein D, Borwein JM, Taylor KF (1985) J Math Phys 26(11):2999

    Article  CAS  Google Scholar 

  25. Borwein D, Borwein JM, Pinner C (1998) Trans Am Math Soc 350(8):3131

    Article  Google Scholar 

  26. Volkert K (2013) Bulletin of the Manifold Atlas, pp 1–5

  27. McIntosh A, Mitrea M (1999) Math Methods Appl Sci 22(18):1599

    Article  Google Scholar 

  28. Clifford (1871) Proc Lond Math Soc s1-4(1):381

  29. Klein F (1890) Math Ann 37(4):544

    Article  Google Scholar 

  30. Bianchi L (1896) Ann Mate 24(1):93

    Article  Google Scholar 

  31. https://git.irsamc.ups-tlse.fr/berger/Madelung

  32. Hudelson M (2010) Math Mag 83(4):294

    Article  Google Scholar 

  33. http://oeis.org/A085469. The Online Encyclopedia of Integer Sequences

  34. Diaz-Marquez A, Battaglia S, Bendazzoli GL, Evangelisti S, Leininger T, Berger JA (2018) J Chem Phys 148(12):124103

    Article  Google Scholar 

  35. Escobar Azor M, Brooke L, Evangelisti S, Leininger T, Loos PF, Suaud N, Berger JA (2019) Sci Post Phys Core 1(1):001

    Article  Google Scholar 

  36. Wigner E (1934) Phys Rev 46:1002

    Article  CAS  Google Scholar 

  37. Alves E, Bendazzoli GL, Evangelist S, Berger JA (2021) Phys Rev B 103:245125

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to dedicate this article to our friend and colleague Fernand Spiegelman, of the Laboratoire de Chimie et Physique Quantiques in Toulouse, on occasion of his retirement. We would like to thank Prof. Richard E. Schwartz (Brown University) for helpful discussions. This work was partly supported by the French “Centre National de la Recherche Scientifique” (CNRS, also under the PICS Action 4263). It has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 642294. This work was also supported by the “Programme Investissements d’Avenir” under the Program ANR-11-IDEX-0002-02, Reference ANR-10-LABX-0037-NEXT. The calculations of this work have been partly performed by using the resources of the HPC center CALMIP under the Grant 2016-p1048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Arjan Berger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “Festschrift in honor of Fernand Spiegelmann”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavernier, N., Bendazzoli, G.L., Brumas, V. et al. Clifford boundary conditions for periodic systems: the Madelung constant of cubic crystals in 1, 2 and 3 dimensions. Theor Chem Acc 140, 106 (2021). https://doi.org/10.1007/s00214-021-02805-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02805-1

Keywords

Navigation