Skip to main content

Advertisement

Log in

First-principle kinetic studies of unimolecular pyrolysis of isopropyl esters as biodiesel surrogates

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Unimolecular pyrolysis of isopropyl acetate (IPA) and isopropyl propanoate (IPP) esters as biodiesel surrogates has been carried out using density functional theory (DFT) at BMK/DZ, TZ level and CBS-QB3 ab initio calculations. Results were compared with isopropyl butanoate (IPB). The rate constants for unimolecular decomposition reactions are calculated based on transition state theory (TST) and compared with the available experimental data. Derived reaction rates have been calculated at a wide range of temperatures relevant to the interest of atmospheric and combustion communities. Among all dissociation channels of IPA, IPP and IPB, acid/propene formation is the most favorable reaction path from kinetic and thermodynamic points of view. On the other side, formation of lower esters is obstructed by high activation energy barriers and is improbable to occur except at high temperature for IPP and IPB. Reaction channels involving simple bond scission require less energy than new esters formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Osmont A, Yahyaoui M, Catoire L, Gökalp I, Swihart MT (2008) Thermochemistry of C–O, (CO)–O, and (CO)–C bond breaking in fatty acid methyl esters. Combust Flame 155:334–342

    Article  CAS  Google Scholar 

  2. Herbinet O, Pitz WJ, Westbrook CK (2008) Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate. Combust Flame 154:507–528

    Article  CAS  Google Scholar 

  3. Herbinet O, Pitz WJ, Westbrook CK (2010) Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate. Combust Flame 157:893–908

    Article  CAS  Google Scholar 

  4. Osmont A, Catoire L, Dagaut P (2010) Thermodynamic data for the modeling of the thermal decomposition of biodiesel. 1. saturated and monounsaturated FAMEs. J Phys Chem A 114:3788–3795

    Article  CAS  PubMed  Google Scholar 

  5. Hakka MH, Glaude P-A, Herbinet O, Battin-Leclerc F (2009) Experimental study of the oxidation of large surrogates for diesel and biodiesel fuels. Combust Flame 156:2129–2144

    Article  CAS  Google Scholar 

  6. Zaitsau DH, Paulechka YU, Blokhin AV, Yermalayeu AV, Kabo AG, Ivanets MR (2009) Thermodynamics of Ethyl Decanoate. J Chem Eng Data 54:3026–3033

    Article  CAS  Google Scholar 

  7. Lapuerta M, Rodrĭguez-Fernàndez J, Oliva F (2010) Determination of enthalpy of formation of methyl and ethyl esters of fatty acids. Chem Phys Lipid 163:172–181

    Article  CAS  Google Scholar 

  8. Osmont A, Catoire L, Gökalp I (2007) Thermochemistry of methyl and ethyl esters from vegetable oils. Int J Chem Kinet 39:481–491

    Article  CAS  Google Scholar 

  9. Chickos JS, Zhao H, Nichols G (2004) The vaporization enthalpies and vapor pressures of fatty acid methyl esters C18, C21 to C23, and C25 to C29 by correlation -gas chromatography. Thermochim Acta 424:111–121

    Article  CAS  Google Scholar 

  10. Seshadri K, Lu T, Herbinet O, Humer S, Niemann U, Pitz WJ, Seiser R, Law CK (2009) Experimental and kinetic modeling study of extinction and ignition of methyl decanoate in laminar non-premixed flows. Proc Combust Inst 32:1067–1074

    Article  CAS  Google Scholar 

  11. Knothe G, Steidley KR (2005) Kinematic viscosity of biodiesel fuel components and related compounds Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84:1059–1065

    Article  CAS  Google Scholar 

  12. Um S, Park SW (2010) Numerical study on combustion and emission characteristics of homogeneous charge compression ignition engines fueled with biodiesel. Energy Fuels 24:916–927

    Article  CAS  Google Scholar 

  13. Deshmane VG, Gogate PR, Pandit AB (2009) Ultrasound assisted synthesis of isopropyl esters from palm fatty acid distillate. Ultrasonics Sonochem 16:345–350

    Article  CAS  Google Scholar 

  14. Maya CY, Lianga YC, Foona CS, Ngan MA, Hook CC, Basiron Y (2005) Key fuel properties of palm oil alkyl esters. Fuel 84:1717–1720

    Google Scholar 

  15. Asakuma Y, Maeda K, Kuramochi H, Fukui K (2009) Theoretical study of the transesterification of triglycerides to biodiesel fuel. Fuel 88:786–791

    Article  CAS  Google Scholar 

  16. Doll KM, Moser BR, Erhan SZ (2007) Surface tension studies of alkyl esters and epoxidized alkyl esters relevant to oleochemically based fuel additives. Energy Fuels 21:3044–3048

    Article  CAS  Google Scholar 

  17. Liu MH, Cheng S-R (2006) Determination modified enthalpy of formation of straight alkyl-chained carboxylic acids and esters. J Mol Struct (THEOCHEM) 763:149–154

    Article  CAS  Google Scholar 

  18. Pogorevc P, Kegl B, Skerget L (2008) Diesel and biodiesel fuel spray simulations. Energy Fuels 22:1266–1274

    Article  CAS  Google Scholar 

  19. Selvan VAM, Anand RB, Udayakumar M (2009) Combustion characteristics of diesohol using biodiesel as an additive in a direct injection compression ignition engine under various compression ratios. Energy Fuels 23:5413–5422

    Article  CAS  Google Scholar 

  20. Bunce M, Snyder D, Adi G et al (2010) Stock and optimized performance and emissions with 5 and 20% soy biodiesel blends in a modern common rail turbo-diesel engine. Energy Fuels 24:928–939

    Article  CAS  Google Scholar 

  21. Song J, Jeon C-H, Boehman AL (2010) Impacts of oxygen diffusion on the combustion rate of in-bed soot particles. Energy Fuels 24:2418

    Article  CAS  Google Scholar 

  22. Anderson RB, Rowley HH (1943) Kinetics of the thermal decomposition of n-propyl and isopropyl formates. J Phys Chem 47(4):54–463. https://doi.org/10.1021/j150429a006

    Article  Google Scholar 

  23. Hurd CD, Blunck FH (1938) The pyrolysis of esters. J Am Chem Soc 60:2419–2425. https://doi.org/10.1021/ja01277a035

    Article  CAS  Google Scholar 

  24. Makens RF, Eversole WG (1939) Kinetics of the thermal decomposition of ethyl formate. J Am Chem Soc 61:3203–3206. https://doi.org/10.1021/ja01266a065

    Article  CAS  Google Scholar 

  25. El-Nahas AM, Navarro MV, Simmie JM, Bozzelli JW, Curran HJ, Dooley S, Metcalfe W (2007) Enthalpies of formation, bond dissociation energies and reaction paths for the decomposition of model biofuels: Ethyl propanoate and Methyl butanoate. J Phys Chem A 111:3727–3739

    Article  CAS  PubMed  Google Scholar 

  26. Le XT, Mai TV-T, Lin KC, Huynh LK (2018) Low-temperature oxidation kinetics of biodiesel molecules: rate rules for concerted HO2 elimination from alkyl-ester peroxy radicals. J Phys Chem A 122(42):8259–8273

    Article  CAS  PubMed  Google Scholar 

  27. El-Nahas AM, Heikle LA, Mangood AH, El-Shereefy EE (2010) Structures and energetics of unimolecular thermal degradation of isopropyl butanoate as a model biofuel: density functional theory and Ab initio studies. J Phys Chem A 114:7996–8002

    Article  CAS  PubMed  Google Scholar 

  28. Mahmoud MAM, El-Demerdash SH, El-Gogary TM, El-Nahas AM (2018) Atmospheric oxidation of methyl propanoate by the OH radical. Russ J Phys Chem A 92:2475–2483

    Article  Google Scholar 

  29. Shiroudi A, Hirao K, Yoshizawa K, Altarawneh M, Abdel-Rahman MA, El-Meligy AB, El-Nahas AM (2020) A computational study on the kinetics of pyrolysis of isopropyl propionate as a biodiesel model: DFT and ab initio investigation. Fuel 281:1187

    Article  CAS  Google Scholar 

  30. Mahmoud MAM, Shiroudi A, Abdel-Rahman MA, Shibl MF, Abdel-Azeim S, El-Nahas AM (2021) Structures, energetics, and kinetics of H-atom abstraction from methyl propionate by molecular oxygen: ab Initio and DFT investigations. Comput Theoret Chem 1196:113119

    Article  CAS  Google Scholar 

  31. Al-Otaibi JS, Mahmoud MAM, Almuqrin AH, El-Gogary TM, Abdel-Rahman MA, El-Nahas AM (2021) Ab initio-based kinetics of hydrogen atom abstraction from methyl propionate by H and CH3 radicals: A biodiesel model. Struct Chem. https://doi.org/10.1007/s11224-021-01746-6

    Article  Google Scholar 

  32. Kumgeh BA, Bergthorson JM (2011) Structure-reactivity trends of C1–C4 alkanoic acid methyl esters. Combust Flame 158:1037–1048. https://doi.org/10.1016/j.combustflame.2010.10.021

    Article  CAS  Google Scholar 

  33. Zhao L, Xie M, Ye L, Cheng Z, Cai J, Li Y et al (2013) An experimental and modeling study of methyl propanoate pyrolysis at low pressure. Combust Flame 160:1958–1966. https://doi.org/10.1016/j.combustflame.2013.04.022

    Article  CAS  Google Scholar 

  34. Yang B, Westbrook CK, Cool TA, Hansen N, Kohse HK (2011) The effect of carbon–carbon double bonds on the combustion chemistry of small fatty acid esters. Z Phys Chem 225:1293–1314. https://doi.org/10.1524/zpch.2011.0167

    Article  CAS  Google Scholar 

  35. Tan T, Yang X, Ju Y, Carter EA (2015) Ab initio pressure-dependent reaction kinetics of methyl propanoate radicals. Phys Chem Chem Phys 17:31061–31072. https://doi.org/10.1039/C5CP06004D

    Article  CAS  PubMed  Google Scholar 

  36. Metcalfe WK, Dooley S, Curran HJ, Simmie JM, El-Nahas AM, Navarro MV (2007) Experimental and modeling study of C5H10O2 ethyl and methyl esters. J Phys Chem A 111:4001–4014. https://doi.org/10.1021/jp067582c

    Article  CAS  PubMed  Google Scholar 

  37. Farooq A, Ren W, Lam KY, Davidson DF, Hanson RK, Westbrook CK (2012) Shock tube studies of methyl butanoate pyrolysis with relevance to biodiesel. Combust Flame 159:3235–3241. https://doi.org/10.1016/j.combustflame.2012.05.013

    Article  CAS  Google Scholar 

  38. Van Beek HL, Winter RT, Eastham GR, Fraaije MW (2014) Synthesis of methyl propanoate by Baeyer-Villiger monooxygenases. Chem Commun 50:13034–13036. https://doi.org/10.1039/C4CC06489E

    Article  CAS  Google Scholar 

  39. Aqar DY, Al Alak HH, Rahmanian N, Mujtaba IM (2018) The investigation of purity improvement for the production of methyl propionate in different types of batch distillation systems. J Oil Gas and Petro Tech 5(1):63–75

    Google Scholar 

  40. Ning H, Wu J, Ma L, Ren W, Davidson DF, Hanson RK (2017) Chemical kinetic modeling and shock tube study of methyl propanoate decomposition. Combust Flame 184:30–40. https://doi.org/10.1016/j.combustflame.2017.06.001

    Article  CAS  Google Scholar 

  41. Giri BR, Al Abbad M, Farooq A (2016) High-temperature unimolecular decomposition of ethyl propionate. Chem Phys Lett 664:184–190. https://doi.org/10.1016/j.cplett.2016.10.012

    Article  CAS  Google Scholar 

  42. Farooq A, Davidson DF, Hanson RK, Westbrook CK (2014) A comparative study of the chemical kinetics of methyl and ethyl propanoate. Fuel 134:26–38. https://doi.org/10.1016/j.fuel.2014.05.035

    Article  CAS  Google Scholar 

  43. Silva AM (2007) A theoretical study of the pyrolysis of isopropyl acetate. Chem Phys Lett 439:8–13

    Article  CAS  Google Scholar 

  44. de Sarmiento MAG, Domınguez RM, Chuchani G (1980) Electronic effects of polar substituents at the acyl carbon. The pyrolysis kinetics of several isopropyl esters. J Phys Chem 84:2531–2535

    Article  Google Scholar 

  45. Taylor R (1978) The mechanism of the gas-phase pyrolysis of esters. Part 7 The effects of substituents at the acyl carbon. J Chem Soc Perkin Trans 2:1255–1258

    Article  Google Scholar 

  46. Scheer JC, Kooyman EC, Sixma FL (1963) Gas phase pyrolysis of alkyl acetates. Recl TraV Chim Pays-Bas 82:1123–1154

    Article  CAS  Google Scholar 

  47. Emovon EU, Maccoll A (1962) Gas-phase eliminations. Part III. The pyrolysis of some secondary and tertiary alkyl acetates. J Chem Soc 335–340.

  48. Le XT, Mai TVT, Ratkiewicz A, Huynh LK (2015) Mechanism and kinetics of low-temperature oxidation of a biodiesel surrogate: methyl propanoate radicals with oxygen molecule. J Phys Chem A 119(16):3689–3703. https://doi.org/10.1021/jp5128282

    Article  CAS  PubMed  Google Scholar 

  49. Tan T, Yang X, Ju Y, Carter EA (2016) Ab initio kinetics studies of hydrogen atom abstraction from methyl propanoate. Phys Chem Chem Phys 18:4594–4607. https://doi.org/10.1039/C5CP07282D

    Article  CAS  PubMed  Google Scholar 

  50. Wu J, Khaled F, Ning H, Ma L, Farooq A, Ren W (2017) Theoretical and shock tube study of the rate constants for hydrogen abstraction reactions of ethyl formate. J Phys Chem A 121(33):6304–6313. https://doi.org/10.1021/acs.jpca.7b06119

    Article  CAS  PubMed  Google Scholar 

  51. Lee I, Johnson LA, Hammond EG (1995) Use of branched-chain esters to reduce the crystallization temperature of biodiesel. J Am Oil Chem Soc 72:1155–1160

    Article  CAS  Google Scholar 

  52. Lee L, Johnson LA, Hammond EG (1996) Reducing the crystallization temperature of biodiesel by winterizing methyl soyate. J Am Oil Chem Soc 73:631–636

    Article  CAS  Google Scholar 

  53. Bajpai D, Tyagi VK (2006) Biodiesel: Source, production, composition, properties and its benefits. J Oleo Sci 55:487–502

    Article  CAS  Google Scholar 

  54. Wang PS, Tat ME, Gerpen JV (2005) The production of fatty acid isopropyl esters and their use as a diesel engine fuel. J Am Oil Chem Soc 82(11):845–849. https://doi.org/10.1007/s11746-005-1153-7

    Article  CAS  Google Scholar 

  55. Boese AD, Martin JML (2004) Development of density functionals for thermochemical kinetics. J Chem Phys 121:3405–3416

    Article  CAS  PubMed  Google Scholar 

  56. Boese AD (1993) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98:5648–5652

    Article  Google Scholar 

  57. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  58. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  59. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI Use of density functional geometries and frequencies. J Chem Phys 110:2822–2827

    Article  CAS  Google Scholar 

  60. Montgomery JA, Frisch MJ, Ochterski JW (2000) A complete basis set model chemistry. VII Use of the minimum population localization method. J Chem Phys 112:6532–6542

    Article  CAS  Google Scholar 

  61. Abdel-Rahman MA, Al-Hashimi N, Shibl MF, Yoshizawa K, El-Nahas AM (2019) Thermochemistry and kinetics of the thermal degradation of 2-methoxyethanol as possible biofuel additives. Sci Rep 9:4535–4550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Al-Otaibi JS, Abdel-Rahman MA, Almuqrin AH, El-Gogary TM, Mahmoud MAM, El-Nahas AM (2021) Thermo-kinetic theoretical studies on pyrolysis of dimethoxymethane fuel additive. Fuel 290:119970–119980

    Article  CAS  Google Scholar 

  63. Abdel-Rahman MA, El-Gogary TM, Al-Hashimi N, Shibl MF, Yoshizawa K, El-Nahas AM (2019) Computational studies on the thermodynamic and kinetic parameters of oxidation of 2-methoxyethanol biofuel via H-atom abstraction by methyl radical. Sci Rep 9:15361–15374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Abdel-Rahman MA, El-Demerdash SH, El-Nahas AM (2017) Theoretical studies on thermochemistry and kinetics of hydrogen abstraction from 2-methoxyethanol by hydrogen atom. Int J Adv Sci Tech Res 2:203–213

    Google Scholar 

  65. Abdel-Rahman MA, Shibl MF, El-Demerdash SH, El-Nahas AM (2020) Simulated kinetics of the atmospheric removal of aniline during daytime. Chemosphere 255:127031

    Article  CAS  PubMed  Google Scholar 

  66. Abdel-Rahman MA, Shibl MF, El-Demerdash SH, El-Nahas AM (2019) First-principle studies on the gas phase OH-initiated oxidation of O-toluidine. Comput Theor Chem 1170:112634

    Article  CAS  Google Scholar 

  67. Shiroudi A, Abdel-Rahman MA, El-Nahas AM, Altarawneh M (2021) Atmospheric chemistry of oxazole: the mechanism and kinetic studies on oxidation reaction initiated by OH radicals. New J Chem 45:2237–2248

    Article  CAS  Google Scholar 

  68. Abdel-Rahman MA, Shibl MF, El-Nahas AM, Abdel-Azeim S, El-Demerdash SH, Al-Hashimi N (2021) Mechanistic insights of degradation of O-Anisidine carcinogenic pollutant initiated by OH radical attack: Theoretical investigations. New J Chem 45:5907–5924

    Article  CAS  Google Scholar 

  69. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, et al. (2004) Gaussian 03, revisions C.02 and D.01; Gaussian, Inc.: Wallingford, CT.

  70. Zhurko GA (2014) Chemcraft V1.5, http://www.Chemcraftptrog.Com.

  71. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  72. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  73. Gilbert RG, Smith SC (1990) Theory of unimolecular and recombination reactions. Blackwell Scientific Publications, Oxford

    Google Scholar 

  74. Steinfeld JI, Francisco JS, Hase WL (1998) Chem Kinet and Dynamics. Prentice-Hall, New York

    Google Scholar 

  75. El-Nahas AM, El-Demerdash SH, El-Shereefy EE (2007) Quantum chemical calculations on the structure and stability of Mg2+XH3OH complexes in the gas phase (X =C, Si, and Ge). Int J Mass Spectrom 263:267–275

    Article  CAS  Google Scholar 

  76. Mcmillen DF, Lewis KE, Smith GP, Golden DM (1982) Laser-powered homogeneous pyrolysis Thermal studies under homogeneous conditions, validation of the technique, and application to the mechanism of azo compound decomposition. J Phys Chem B 86:709–718

    Article  CAS  Google Scholar 

  77. Amin HB, Taylor R (1979) Electrophilic aromatic reactivites via pyrolysis of esters XVIII: pyrolysis of 1-aryl-1-methylethyl acetates: the high polarisability of the meta-methyl substituent. J Chem Soc Perkin Trans 2:228–232

    Article  Google Scholar 

  78. Smith GG, Mutter L, Todd GP (1977) Steric effects in homogeneous gas-phase reactions Pyrolysis of isopropyl esters. J Org Chem 42:44–47

    Article  CAS  Google Scholar 

  79. Taylor R (1975) The nature of the transition state in ester pyrolysis. Part II The relative rates of pyrolysis of ethyl, isopropyl, and t-butyl acetates, phenylacetates, benzoates, phenyl carbonates, and N-phenylcarbamates. J Chem Soc, Perkin Trans 2:1025–1029

    Article  Google Scholar 

  80. Blades AT (1954) The kinetics of the pyrolysis of ethyl and isopropyl formates and acetates. Can J Chem 32:366–372

    Article  CAS  Google Scholar 

  81. Chuchani G, Martin I, Yepez M, Diaz MJ (1977) Kinetics of the gas phase pyrolysis of some secondary acetates. React Kinet Catal Lett 4:449–454

    Article  Google Scholar 

  82. Chuchani G, Martin I, Fraile G, Lingstuyl O, Diaz MJ (1978) Kinetics of the gas-phase elimination of isopropyl α-substituted acetates. Int J Chem Kinet 10:893–897

    Article  CAS  Google Scholar 

  83. Pérez Á, Casas A, Fernández CM, Ramos MJ, Rodriguez L (2010) Winterization of peanut biodiesel to improve the cold flow properties. Bioresource Technol 101:7375–7381

    Article  CAS  Google Scholar 

  84. Foglia TA, Nelson LA, Dunn RO, Marmer WN (1997) Low-temperature properties of alkyl esters of tallow and grease. J Am Oil Chem Soc 74:951–955

    Article  CAS  Google Scholar 

  85. Henon E, Bohr F (2000) Comparative ab initio MO investigation on the reactivity of the three NH(a1Δ), NH(X3Σ−) and NH2(X̃2B1) radical species in their bimolecular abstraction gas-phase reaction with the HN3 molecule. J Mol Struct Theochem 531:283–299

    Article  CAS  Google Scholar 

  86. Rapp D (1972) Statistic Mechanics, Holt. Rinehart & Winston, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.M.E was involved in conceptualization, methodology, formal analysis, data curation, validation, visualization, investigation, writing—review & editing, project administration and funding acquisition. L.A.H. helped in conceptualization, methodology, formal analysis, data curation, validation, visualization, investigation, writing original draft review & editing. M.A.A. contributed to formal analysis, data curation, validation, visualization, investigation, writing—review & editing. A.M.E. helped in formal analysis, data curation, validation, visualization, investigation, supervision, writing—review & editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tarek M. El-Gogary or Ahmed M. El-Nahas.

Ethics declarations

Conflict of intrest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Authors certify that they follow the journal ethics to the best of their knowledge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3515 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Gogary, T.M., Heikal, L.A., Abdel-Rahman, M.A. et al. First-principle kinetic studies of unimolecular pyrolysis of isopropyl esters as biodiesel surrogates. Theor Chem Acc 140, 110 (2021). https://doi.org/10.1007/s00214-021-02800-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02800-6

Keywords

Navigation