Skip to main content
Log in

Theoretical insight on the structural and electronic properties of (PdH)N (N = 10–35) clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The structure and electronic properties of the (PdH)N (N = 10–35) clusters were investigated by combining the artificial bee colony algorithm with density functional theory (DFT) calculations. Structure analysis indicates that (PdH)N clusters tend to compose the spherical disordered geometry with the hydrogen atoms generally distribute on the surface in the formation of twofold bridge or threefold hollow sites. The binding energy calculation demonstrated that the formation of (PdH)N clusters is thermodynamic feasible, and the stability of clusters shows an upward trend with the size increasing. Detail structural information show that the bond length of Pd–Pd stretch in the clusters compare with pure Pd bulk since the insertion of H atoms. With respect to the electronic properties, Bader charge analysis revealed the overall trends of charge transfer from Pd to H atoms. The density of states identified the major bonding area of Pd–Pd and Pd-H, as well as the non-magnetic or weakly magnetic characteristics of (PdH)N clusters. Detailed bonding analysis has conducted to (PdH)35 cluster to verify the difference of interaction between Pd and various H atoms. The relationship between inverse projected crystal orbital Hamilton population (-IpCOHP) and Pd-H bond length shows that the bond strength of Pd-H interaction is strongly associated with their structural properties in medium-sized clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy 32:1121–1140. https://doi.org/10.1016/j.ijhydene.2006.11.022

    Article  CAS  Google Scholar 

  2. Schneemann A, White JL, Kang S et al (2018) Nanostructured metal hydrides for hydrogen storage. Chem Rev 118:10775–10839. https://doi.org/10.1021/acs.chemrev.8b00313

    Article  CAS  PubMed  Google Scholar 

  3. Lototskyy MV, Tolj I, Pickering L et al (2017) The use of metal hydrides in fuel cell applications. Prog Nat Sci Mater Int 27:3–20. https://doi.org/10.1016/j.pnsc.2017.01.008

    Article  CAS  Google Scholar 

  4. Yoshimura K, Langhammer C, Dam B (2013) Metal hydrides for smart window and sensor applications. MRS Bull 38:495–503. https://doi.org/10.1557/mrs.2013.129

    Article  CAS  Google Scholar 

  5. Felderhoff M, Bogdanović B (2009) High temperature metal hydrides as heat storage materials for solar and related applications. Int J Mol Sci 10:335–344. https://doi.org/10.3390/ijms10010325

    Article  CAS  Google Scholar 

  6. Chen XY, Wei LX, Deng L et al (2014) A review on the metal hydride based hydrogen purification and separation technology. Appl Mech Mater 448–453:3027–3036

    Google Scholar 

  7. Adams BD, Chen A (2011) The role of palladium in a hydrogen economy. Mater Today 14:282–289. https://doi.org/10.1016/S1369-7021(11)70143-2

    Article  CAS  Google Scholar 

  8. Konda SK, Chen A (2016) Palladium based nanomaterials for enhanced hydrogen spillover and storage. Mater Today 19:100–108. https://doi.org/10.1016/j.mattod.2015.08.002

    Article  CAS  Google Scholar 

  9. Lewis FA (1967) The palladium/hydrogen system. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.522.9812

  10. Flanagan TB, Oates WA (1991) The palladium-hydrogen system. Annu Rev Mater Sci 21:269–304. https://doi.org/10.1146/annurev.ms.21.080191.001413

    Article  CAS  Google Scholar 

  11. Roduner E (2006) Size matters: Why nanomaterials are different. Chem Soc Rev 35:583–592. https://doi.org/10.1039/b502142c

    Article  CAS  PubMed  Google Scholar 

  12. Pundt A, Suleiman M, Bähtz C et al (2004) Hydrogen and Pd-clusters. Mater Sci Eng B Solid-State Mater Adv Technol 108:19–23. https://doi.org/10.1016/j.mseb.2003.10.029

    Article  CAS  Google Scholar 

  13. Yamauchi M, Ikeda R, Kitagawa H, Takata M (2008) Nanosize effects on hydrogen storage in palladium. J Phys Chem C 112:3294–3299. https://doi.org/10.1021/jp710447j

    Article  CAS  Google Scholar 

  14. Zlotea C, Cuevas F, Paul-Boncour V et al (2010) Size-dependent hydrogen sorption in ultrasmall Pd clusters embedded in a mesoporous carbon template. J Am Chem Soc 132:7720–7729. https://doi.org/10.1021/ja101795g

    Article  CAS  PubMed  Google Scholar 

  15. Ruda M, Crespo EA, de Debiaggi SR (2010) Atomistic modeling of H absorption in Pd nanoparticles. J Alloys Compd 495:471–475. https://doi.org/10.1016/j.jallcom.2009.10.064

    Article  CAS  Google Scholar 

  16. Narehood DG, Kishore S, Goto H et al (2009) X-ray diffraction and H-storage in ultra-small palladium particles. Int J Hydrogen Energy 34:952–960. https://doi.org/10.1016/j.ijhydene.2008.10.080

    Article  CAS  Google Scholar 

  17. Min X, Kanan MW (2015) J Am Chem Soc 137:4701–4708. https://doi.org/10.1021/ja511890h

    Article  CAS  PubMed  Google Scholar 

  18. Sheng W, Kattel S, Yao S et al (2017) Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ Sci 10:1180–1185. https://doi.org/10.1039/c7ee00071e

    Article  CAS  Google Scholar 

  19. Gao D, Zhou H, Cai F et al (2017) Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res 10:2181–2191. https://doi.org/10.1007/s12274-017-1514-6

    Article  CAS  Google Scholar 

  20. Zhu W, Kattel S, Jiao F, Chen JG (2019) Adv Energy Mater 9:1–6. https://doi.org/10.1002/aenm.201802840

    Article  CAS  Google Scholar 

  21. Wang J, Kattel S, Hawxhurst CJ et al (2019) Angew Chemie - Int Ed 58:6271–6275. https://doi.org/10.1002/anie.201900781

    Article  CAS  Google Scholar 

  22. Xu W, Fan G, Chen J et al (2020) Angew Chemie - Int Ed 59:3511–3516. https://doi.org/10.1002/anie.201914335

    Article  CAS  Google Scholar 

  23. Houari A, Matar SF, Eyert V (2014) Electronic structure and crystal phase stability of palladium hydrides. J Appl Phys. https://doi.org/10.1063/1.4901004

    Article  Google Scholar 

  24. Bourgeois N, Crivello JC, Cenedese P, Joubert JM (2017) Systematic first-principles study of binary metal hydrides. ACS Comb Sci 19:513–523. https://doi.org/10.1021/acscombsci.7b00050

    Article  CAS  PubMed  Google Scholar 

  25. Long D, Li M, Meng D et al (2018) Accounting for the thermo-stability of PdHx (x = 1–3) by density functional theory. Int J Hydrogen Energy 43:18372–18381. https://doi.org/10.1016/j.ijhydene.2018.08.030

    Article  CAS  Google Scholar 

  26. Moc J, Musaev DG, Morokuma K (2000) J Phys Chem A 104:11606–11614. https://doi.org/10.1021/jp0022104

    Article  CAS  Google Scholar 

  27. Moc J, Musaev DG, Morokuma K (2003) Activation and adsorption of multiple H2 molecules on a Pd5 cluster: A density functional study. J Phys Chem A 107:4929–4939. https://doi.org/10.1021/jp0343436

    Article  CAS  Google Scholar 

  28. Zhou C, Yao S, Wu J et al (2008) Hydrogen dissociative chemisorption and desorption on saturated subnano palladium clusters (Pdn, n = 2–9). Phys Chem Chem Phys 10:5445–5451. https://doi.org/10.1039/b804877k

    Article  CAS  PubMed  Google Scholar 

  29. Pelzer AW, Jellinek J, Jackson KA (2015) H2 saturation on palladium clusters. J Phys Chem A 119:3594–3603. https://doi.org/10.1021/jp512643a

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Dolg M (2015) ABCluster: the artificial bee colony algorithm for cluster global optimization. Phys Chem Chem Phys 17:24173–24181. https://doi.org/10.1039/b000000x

    Article  PubMed  Google Scholar 

  31. Zhang J, Dolg M (2016) Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. Phys Chem Chem Phys 18:3003–3010. https://doi.org/10.1039/c5cp06313b

    Article  CAS  PubMed  Google Scholar 

  32. Sun Y, Liu S, Guo X, Huang S (2019) Structural, magnetic and electronic properties of CunNi55- n (n= 0–55) nanoparticles: combination artificial bee colony algorithm with DFT. Comput Theor Chem 1154:11–16. https://doi.org/10.1016/j.comptc.2019.03.008

    Article  CAS  Google Scholar 

  33. Khan MA, Wang N, Zhang L et al (2020) Analysis and assessment of the structural, electronic properties of (ZrH2)n (n = 5–24) clusters: density function theory calculations. Comput Theor Chem 1188:112940. https://doi.org/10.1016/j.comptc.2020.112940

    Article  CAS  Google Scholar 

  34. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B - Condens Matter Mater Phys 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  36. Perdew JP, Burke K (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B - Condens Matter Mater Phys 54:16533–16539. https://doi.org/10.1103/PhysRevB.54.16533

    Article  CAS  Google Scholar 

  37. Köster AM, Calaminici P, Orgaz E et al (2011) On the ground state of Pd13. J Am Chem Soc 133:12192–12196. https://doi.org/10.1021/ja203889r

    Article  CAS  PubMed  Google Scholar 

  38. Efremenko I, German ED, Sheintuch M (2000) Density functional study of the interactions between dihydrogen and Pdn (n = 1–4) clusters. J Phys Chem A 104:8089–8096. https://doi.org/10.1021/jp0009195

    Article  CAS  Google Scholar 

  39. Ni M, Zeng Z (2009) Density functional study of hydrogen adsorption and dissociation on small Pdn (n = 1–7) clusters. J Mol Struct THEOCHEM 910:14–19. https://doi.org/10.1016/j.theochem.2009.06.008

    Article  CAS  Google Scholar 

  40. Dhilip Kumar TJ, Tarakeshwar P, Balakrishnan N (2008) Structural, energetic, and electronic properties of hydrogenated titanium clusters. J Chem Phys. https://doi.org/10.1063/1.2918738

    Article  PubMed  Google Scholar 

  41. Pelzer AW, Jellinek J, Jackson KA (2013) H2 reactions on palladium clusters. J Phys Chem A 117:10407–10415. https://doi.org/10.1021/jp403089x

    Article  CAS  PubMed  Google Scholar 

  42. Kubas GJ (1988) Molecular hydrogen complexes: coordination of a σ bond to transition metals. Acc Chem Res 21:120–128. https://doi.org/10.1021/ar00147a005

    Article  Google Scholar 

  43. Cabria I, López MJ, Fraile S, Alonso JA (2012) Adsorption and dissociation of molecular hydrogen on palladium clusters supported on graphene. J Phys Chem C 116:21179–21189. https://doi.org/10.1021/jp305635w

    Article  CAS  Google Scholar 

  44. Ashwell AP, Lin W, Hofman MS et al (2017) J Am Chem Soc 139:17582–17589. https://doi.org/10.1021/jacs.7b09914

    Article  CAS  PubMed  Google Scholar 

  45. Kittel C, McEuen P, McEuen P (1996) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  46. Genest A, Krüger S, Rösch N (2008) Impurity effects on small Pd clusters: a relativistic density functional study of Pd4X, X = H, C, O. J Phys Chem A 112:7739–7744. https://doi.org/10.1021/jp7119075

    Article  CAS  PubMed  Google Scholar 

  47. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360. https://doi.org/10.1016/j.commatsci.2005.04.010

    Article  Google Scholar 

  48. Liu X, Tian D, Meng C (2015) DFT study on the adsorption and dissociation of H2 on Pdn (n = 4, 6, 13, 19, 55) clusters. J Mol Struct 1080:105–110. https://doi.org/10.1016/j.molstruc.2014.09.078

    Article  CAS  Google Scholar 

  49. Nørskov JK, Studt F, Abild-Pedersen F, Bligaard T (2014) Fundamental concepts in heterogeneous catalysis. John Wiley & Sons

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Giant No. 21776004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3935 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., Guo, X., Zhang, L. et al. Theoretical insight on the structural and electronic properties of (PdH)N (N = 10–35) clusters. Theor Chem Acc 140, 92 (2021). https://doi.org/10.1007/s00214-021-02794-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02794-1

Keywords

Navigation