Skip to main content
Log in

CO2 electrochemical reduction to methane on transition metal porphyrin nitrogen-doped carbon material M@d-NC: theoretical insight

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Designing highly efficient electrocatalysts for electrochemical reduction of CO2 (ERC) to value-added chemicals is a better approach to balance carbon emission. In this paper, through density functional theory (DFT) calculation, we study the catalytic performance of the catalyst supported on nitrogen-doped carbon (NC) for the electrochemical reduction of CO2. We investigated anchoring a single transition metal atom on the NC, denoted as M@d-NC (M=Rh, Ir). The results show that Rh@d-NC shows the best performance in terms of both activity and stability, which is very favorable for methane production (* + CO2 + 8H+  → C*OOH + 7H+  → CO* + 6H+  → CHO* + 5H+  → CH2O* + 4H+  → CH3O* + 3H+  → CH3OH* + 2H+ → CH3* + H+  → * + CH4). By using the microkinetic model, the rate constants of CHO* → CH2O* on Rh@d-NC and CHO* → *CHOH on Ir@d-NC are obtained. It is confirmed that Rh@d-NC has high activity and selectivity for methane formation. These findings provide design guidelines for developing efficient carbon-based catalysts that could potentially extend ERC to fuels and chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hirunsit P (2013) Electroreduction of carbon dioxide to methane on copper, copper-silver, and copper-gold catalysts: a dft study. J Phys Chem C 117:8262–8268

    Article  CAS  Google Scholar 

  2. Pachauri RK, Meyer LA (2014) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change IPCC. Climate Change Synthesis Report, 151

  3. Birdja YY, Shen J, Koper MTM (2017) Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO2 reduction to formic acid. Catal Today 288:37–47

    Article  CAS  Google Scholar 

  4. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136:14107–14113

    Article  CAS  PubMed  Google Scholar 

  5. Lu Q, Rosen J, Jiao F (2015) Nanostructured Metallic Electrocatalysts for carbon dioxide reduction. ChemCatChem 7:38–47

    Article  Google Scholar 

  6. Goeppert A, Czaun M, Jones JP, Surya Prakash GK, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products-closing the loop. Chem Soc Rev 43:7995–8048

    Article  CAS  PubMed  Google Scholar 

  7. Jiang K, Kharel P, Peng Y, Gangishetty MK, Lin H-YG, Stavitski E, Attenkofer K, Wang H (2017) Silver nanoparticles with surface-bonded oxygen for highly selective CO2 reduction. ACS Sustain Chem Eng 5:8529–8534

    Article  CAS  Google Scholar 

  8. Siahrostami S, Jiang K, Karamad M, Chan K, Wang H, Nørskov J (2017) Theoretical investigations into defected graphene for electrochemical reduction of CO2. ACS Sustain Chem Eng 5:11080–11085

    Article  CAS  Google Scholar 

  9. Jhong H-RM, Ma S, Kenis PJA (2013) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2:191–199

    Article  Google Scholar 

  10. Costentin C, Robert M, Saveant J-M (2013) Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev 42:2423–2436

    Article  CAS  PubMed  Google Scholar 

  11. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727

    Article  CAS  PubMed  Google Scholar 

  12. Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43:631–675

    Article  CAS  PubMed  Google Scholar 

  13. Zhu DD, Liu JL, Qiao SZ (2016) Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv Mater 28:3423–3452

    Article  CAS  PubMed  Google Scholar 

  14. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38:89–99

    Article  CAS  PubMed  Google Scholar 

  15. Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. Modern Aspects of Electrochem 42:89–189

    Article  CAS  Google Scholar 

  16. Zhu W et al (2013) Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc 135:16833–16836

    Article  CAS  PubMed  Google Scholar 

  17. Zhu W et al (2014) Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc 136:16132–16135

    Article  CAS  PubMed  Google Scholar 

  18. Mistry H et al (2014) Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc 136:16473–16476

    Article  CAS  PubMed  Google Scholar 

  19. Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao F (2014) A selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun 5(1):1–6

    Google Scholar 

  20. Kim C et al (2015) Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J Am Chem Soc 137:13844–13850

    Article  CAS  PubMed  Google Scholar 

  21. Kim C et al (2017) Insight into electrochemical CO2 reduction on surface-molecule-mediated Ag nanoparticles. ACS Catal 7:779–785

    Article  CAS  Google Scholar 

  22. Rosen J et al (2015) Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal 5:4293–4299

    Article  CAS  Google Scholar 

  23. Hori Y, Murata A, Takahashi R (1989) Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J Chem Soc Faraday Trans 1(85):2309–2326

    Article  Google Scholar 

  24. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3:1311–1315

    Article  CAS  Google Scholar 

  25. Pan F, Deng W, Justiniano C, Li Y (2018) Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl Catal B-Environ 226:463–472

    Article  CAS  Google Scholar 

  26. Jia M, Choi C, Wu TS, Ma C, Kang P, Tao H, Fan Q, Hong S, Liu S, Soo Y-L, Jung Y, Qiu J, Sun Z (2018) Carbonsupported Ni nanoparticles for efficient CO2 electroreduction. Chem Sci 9:8775–8780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsubu JC, Zhang S, DeRita L, Marinkovic NS, Chen JG, Graham GW, Pan X, Christopher P (2017) Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat Chem 9:120–127

    Article  CAS  PubMed  Google Scholar 

  28. Back S, Lim J, Kim N-Y, Kim Y-H, Jung Y (2017) Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem Sci 8:1090–1096

    Article  CAS  PubMed  Google Scholar 

  29. Duan X, Xu J, Wei Z, Ma J, Guo S, Wang S, Dou S (2017) Metal-free carbon materials for CO2 electrochemical reduction. Adv Mater 29(41):1701784

    Article  Google Scholar 

  30. Wu J, Yadav RM, Liu M, Sharma PP, Tiwary CS, Ma L, Zou X, Zhou X-D, Yakobson BI, Lou J, Ajayan PM (2015) Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes ACS. NANO 9:5364–5371

    CAS  Google Scholar 

  31. Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen BA, Haasch R, Salehi-Khojin A (2013) Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat Commun 4(1):1–8

    Article  Google Scholar 

  32. Wu J, Liu M, Sharma PP, Yadav RM, Ma L, Yang Y, Zou X, Zhou XD, Vajtai R, Yakobson BI, Lou J, Ajayan PM (2016) Incorporation of nitrogen defects for efficient reduction of CO2 Via two-electron pathway on three-dimensional graphene foam. Nano Lett 16:466–470

    Article  CAS  PubMed  Google Scholar 

  33. Song Y, Chen W, Zhao C, Li S, Wei W, Sun Y (2017) Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew Chem Int Ed 56:10840–10844

    Article  CAS  Google Scholar 

  34. Moller T, Ju W, Bagger A, Wang X, Luo F, Thanh TN, Varela AS, Rossmeisl J, Strasser P (2019) Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ Sci 12:640–647

    Article  Google Scholar 

  35. Zhao C, Dai X, Yao T, Chen W, Wang X, Wang J, Yang J, Wei S, Wu Y, Li Y (2017) Ionic Exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc 139:8078–8081

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Bi W, Chen M, Sun Y, Ju H, Yan W, Zhu J, Wu X, Chu W, Wu C, Xie Y (2017) Exclusive Ni−N4 sites realize nearunity CO selectivity for electrochemical CO2 reduction. J Am Chem Soc 139:14889–14892

    Article  CAS  PubMed  Google Scholar 

  37. Yang H, Hung S, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang H, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen H, Li C, Zhang T, Liu B (2018) Atomically dispersed Ni (I) as the active site for electrochemical CO2 reduction. Nat Energy 3:140–147

    Article  CAS  Google Scholar 

  38. Jiang K, Siahrostami S, Zheng T, Hu Y, Hwang S, Stavitski E, Peng Y, Dynes J, Gangisetty M, Su D, Attenkofer K, Wang H (2018) Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ Sci 11:893–903

    Article  CAS  Google Scholar 

  39. Zhang A, He R, Li H, Chen Y, Kong T, Li K, Ju H, Zhu J, Zhu W, Zeng J (2018) Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction. Angew Chem Int Ed 57:10954–10958

    Article  CAS  Google Scholar 

  40. Zheng T, Jiang K, Ta N, Hu Y, Zeng J, Liu J, Wang H (2019) Large-Scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3(1):265–278

    Article  CAS  Google Scholar 

  41. Yang F, Song P, Liu X, Mei B, Xing W, Jiang Z, Gu L, Xu W (2018) Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew Chem Int Ed 57:12303–12307

    Article  CAS  Google Scholar 

  42. Cheng Y, Zhao S, Johannessen B, Veder JP, Saunders M, Rowles MR, Jiang SP (2018) Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv Mater 30(13):1706287

    Article  Google Scholar 

  43. Ye Y, Cai F, Li H, Wu H, Wang G, Li Y, Miao S, Xie S, Si R, Wang J, Bao X (2017) Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction. Nano Energy 38:281–289

    Article  CAS  Google Scholar 

  44. Varela AS, Ju W, Bagger A, Franco P, Rossmeisl J, Strasser P (2019) Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal 9:7270–7284

    Article  CAS  Google Scholar 

  45. Pan FP, Zhang HG, Liu KX, Cullen D, More K, Wang MY, Feng ZX, Wang GF, Wu G, Li Y (2018) Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal 8:3116–3122

    Article  CAS  Google Scholar 

  46. Wang ZX, Zhao JX, Cai QH (2017) CO2 electroreduction performance of a single transition metal atom supported on porphyrin-like graphene: a computational study. Phys Chem Chem Phys 19:23113–23121

    Article  CAS  PubMed  Google Scholar 

  47. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46

    Article  PubMed  Google Scholar 

  48. Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913

    Article  CAS  PubMed  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone, V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralt JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev V, Austin AJ, Cammi R, Pomelli C, Ochterski J, Martin, RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian Inc., Wallingford CT, Gaussian 09, Revision D.01

  50. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  51. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. potentials for the transition metal atoms Sc to Hg. J Chem Phys 82(1):270–283

    Article  CAS  Google Scholar 

  52. Peterson AA, Nørskov JK (2012) Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett 3:251–258

    Article  CAS  Google Scholar 

  53. Karamad M, Hansen HA, Rossmeisl J, Nørskov JK (2015) Mechanistic pathway in the electrochemical reduction of CO2 on RuO2 ACS. Catal 5:4075–4081

    CAS  Google Scholar 

  54. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure: iv constants of diatomic molecules New York:Van Nostrand Reinhold Company.

  55. Dyer MS, Robin A, Haq S, Raval R, Persson M, Klimes J (2011) Understanding the interaction of the porphyrin macrocycle to reactive metal substrates: structure, bonding, and adatom capture. ACS Nano 5:1831–1838

    Article  CAS  PubMed  Google Scholar 

  56. Hanke F, Haq S, Raval R, Persson M (2011) Heat-to-connect: surface commensurability directs organometallic one-dimensional self-assembly. ACS Nano 5:9093–9103

    Article  CAS  PubMed  Google Scholar 

  57. Haq S, Hanke F, Dyer MS, Persson M, Iavicoli P, Amabilino DB, Raval R (2011) Clean coupling of unfunctionalized porphyrins at surfaces to give highly oriented organometallic oligomers. J Am Chem Soc 133:12031–12039

    Article  CAS  PubMed  Google Scholar 

  58. Bischoff F, Seufert K, Auwarter W, Joshi S, Vijayaraghavan S, Ecija D, Diller K, Papageorgiou AC, Fischer S, Allegretti F, Duncan DA, Klappenberger F, Blobner F, Han R, Barth JV (2013) How surface bonding and repulsive interactions cause phase transformations ordering of a prototype macrocyclic compound on Ag(111). ACS Nano 7:3139–3149

    Article  CAS  PubMed  Google Scholar 

  59. Diller K, Klappenberger F, Allegretti F, Papageorgiou AC, Fischer S, Wiengarten A, Joshi S, Seufert K, Ecija D (2013) Investigating the molecule-substrate interaction of prototypic tetrapyrrole compounds Adsorption and self-metalation of porphine on Cu(111). J Chem Phys 138:154710–1–154719

    Article  Google Scholar 

  60. Shi C, Hansen HA, Lausche AC, Nørskov JK (2014) Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Phys Chem Chem Phys 16:4720–4727

    Article  CAS  PubMed  Google Scholar 

  61. Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) The brønsted-evans-polanyi relation and the volcano curve in heterogeneous catalysis. J Catal 224:206–217

    Article  CAS  Google Scholar 

  62. Plessow PN, Abild-Pedersen F (2015) Examining the linearity of transition state scaling relations. J Phys Chem C 119:10448–10453

    Article  CAS  Google Scholar 

  63. Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839

    Article  CAS  Google Scholar 

  64. Shen J, Kortlever R, Kas R, Birdja YY, Diaz-Morales O, Kwon Y, Koper MT (2015) Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat Commun 6(1):1–8

    Article  Google Scholar 

  65. Ju W, Bagger A, Hao GP, Varela AS, Sinev I, Bon V, Strasser P (2017) Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO 2. Nat Commun 8(1):1–9

    Article  Google Scholar 

  66. Hussain J, Jonsson H, Skulason E (2018) Calculations of product selectivity in electrochemical CO2 reduction. ACS Cata 8:5240–5249

    Article  CAS  Google Scholar 

  67. Back S, Kim H, Jung Y (2015) Selective heterogeneous CO2 electroreduction to methanol. ACS Catal 5:965–971

    Article  CAS  Google Scholar 

  68. (a) Li H, Li Y, Koper MTM, Calle-Vallejo F (2014) Bond-making and breaking between carbon, nitrogen, and oxygen in electrocatalysis J. Am. Chem. Soc, 136, 15694−15701. (b) Michalsky R, Zhang YJ, Peterson AA (2014) Trends in the hydrogen evolution activity of metal carbide catalysts ACS. Catal, 4, 1274−1278. (c) Klaus S, Cai Y, Louie, MW, Trotochaud L, Bell, AT (2015) Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity J. Phys. Chem. C, 119, 7243−7254. (d) Swierk J, Klaus S, Trotochaud L, Bell AT, Tilley TD (2015) Electrochemical study of the energetics of the oxygen evolution reaction at Nickel Iron (Oxy)hydroxide catalysts J. Phys. Chem. C, 119, 19022−19029

  69. Chan K, Tsai C, Hansen HA, Nørskov JK (2014) Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem 6:1899–1905

    Article  CAS  Google Scholar 

  70. Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J (2017) Electrochemical CO2 reduction: a classification problem. Chem Phys Chem 18:3266–3273

    Article  CAS  PubMed  Google Scholar 

  71. Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J (2017) Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction. Catal Today 288:74–78

    Article  CAS  Google Scholar 

  72. Koga O, Matsuo T, Yamazaki H, Hori Y (1998) Infrared spectroscopic observation of intermediate species on Ni and Fe electrodes in the electrochemical reduction of CO2 and CO to hydrocarbons. Bull Chem Soc Jpn 71:315–320

    Article  CAS  Google Scholar 

  73. Nikolic BZ, Huang H, Gervasio D, Lin A, Fierro C, Adzic RR, Yeager E (1990) Electroreduction of carbon dioxide on platinum single crystal electrodes: electrochemical and in situ FTIR studies. J Electroanal Chem Interfacial Electrochem 295:415–423

    Article  CAS  Google Scholar 

  74. Oda I, Ogasawara H, Ito M (1996) Carbon monoxide adsorption on copper and silver electrodes during carbon dioxide electroreduction studied by infrared reflection absorption spectroscopy and surface-enhanced raman spectroscopy. Langmuir 12:1094–1097

    Article  CAS  Google Scholar 

  75. Perez-Gallent E, Figueiredo MC, Calle-Vallejo F, Koper MTM (2017) Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew Chem Int Ed 56:3621–3624

    Article  CAS  Google Scholar 

  76. Shi C, Chan K, Yoo JS, Nørskov JK (2016) Barriers of electrochemical CO2 reduction on transition metals. Org Process Res Dev 20:1424–1430

    Article  CAS  Google Scholar 

  77. Dewulf DW, Jin T, Bard AJ (1989) Electrochemical and surface studies of carbon dioxide reduction to methane and ethylene at copper electrodes in aqueous solutions. J Electrochem Soc 136:1686–1691

    Article  CAS  Google Scholar 

  78. Hori Y, Takahashi R, Yoshinami Y, Murata A (1997) Electrochemical reduction of CO at a copper electrode. J Phys Chem B 101:7075–7081

    Article  CAS  Google Scholar 

  79. Hori Y, Murata A, Takahashi R, Suzuki S (1987) Electroreduction of CO to CH4 and C2H4 at a copper electrode in aqueous-solutions at ambient-temperature and pressure. J Am Chem Soc 109:5022–5023

    Article  CAS  Google Scholar 

  80. Kim JJ, Summers DP, Frese KW Jr (1988) Reduction of carbon dioxide and carbon monoxide to methane on copper foil electrodes. J Electroanal Chem Interfacial Electrochem 245:223–244

    Article  CAS  Google Scholar 

  81. Filot IAW, Zijlstra B, Hensen EJM (2019) http://www.mkmcxx.nl (accessed Dec 2, 2019).

  82. Zhang X, Li Y, Guo P, Le J-B, Zhou Z-Y, Cheng J, Sun S-G (2019) Theory on optimizing the activity of electrocatalytic proton coupled electron transfer reactions. J Catal 376:17–24

    Article  CAS  Google Scholar 

  83. Lu XQ, Deng ZG, Wei SX, Zhu Q, Wang WL, Guo WY, Wu CML (2015) CO tolerance of a Pt3Sn(111) catalyst in ethanol decomposition. Catal Sci Technol 5:3246–3258

    Article  CAS  Google Scholar 

  84. Liu P, Rodriguez JA (2006) Water-Gas-Shift reaction on molybdenum carbide surfaces: essential role of the oxycarbide. J Phys Chem B 110:19418–19425

    Article  CAS  PubMed  Google Scholar 

  85. Vilekar SA, Fishtik I, Datta R (2010) Kinetics of the hydrogen electrode reaction. J Electrochem Soc 157:B1040–B1050

    Article  CAS  Google Scholar 

  86. Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis-calculations and concepts. Adv Catal 31:71–129

    Google Scholar 

  87. Lima FHB, Zhang J, Shao MH, Sasaki K, Vukmirovic MB, Ticianelli EA, Adzic RR (2007) Catalytic activity-d-Band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J Phys Chem C 111:404–410

    Article  CAS  Google Scholar 

  88. Hammer B, Nørskov JK (1995) Why gold is the noblest of all the metals. Nature 376:238–240

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province and Shanxi Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibei Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S. CO2 electrochemical reduction to methane on transition metal porphyrin nitrogen-doped carbon material M@d-NC: theoretical insight. Theor Chem Acc 140, 78 (2021). https://doi.org/10.1007/s00214-021-02788-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02788-z

Keywords

Navigation