Skip to main content
Log in

O—H and C—H bond dissociations in non-phenyl and phenyl groups: A DFT study with dispersion and long-range corrections

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Hydrogen atom transfer is one important reaction in biological system, in industry, and in atmosphere. The reaction is preluded by hydrogen bond dissociation. To gain a comprehensive understanding on the reaction, it is necessary to investigate how the current computational methods model hydrogen bond dissociation. As a starting point, we utilized density functional theory-based calculations to identify the effect of dispersion and long-range corrections on O—H and C—H dissociations in non-phenyl and phenyl groups. We employed five different methods, namely B3LYP, CAM-B3LYP (with long-range correction), M06-2X, and B3LYP and CAM-B3LYP with the D3 version of Grimme’s dispersion. The results showed that for the case of O—H dissociation in two member of phenyl groups, namely phenol and catechol, the dispersion correction’s effect was negligible, but the long-range correction’s effect was significant. The significant effect was shown by the increasing of energy barrier and the shortening of O—H interatomic distance in the transition state. Therefore, we suggest one should consider the long-range correction in modeling hydrogen bond dissociation in phenolic compounds, namely phenol and catechol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zielinski ZAM, Pratt DA (2017) J Org Chem 82(6):2817–2825

    CAS  PubMed  Google Scholar 

  2. Yin H, Porter NA (2011) Chem Rev 111(10):5944–5972

    CAS  PubMed  Google Scholar 

  3. Shang Y, Zhou H, Li X, Zhou J, Chen K (2019) New J Chem 43:15736–15742

    CAS  Google Scholar 

  4. Vo QV, Nam PC, Bay MV, Thong NM, Cuong ND, Mechler A (2018) Sci Rep 8:12361

    PubMed  PubMed Central  Google Scholar 

  5. Xue Y, Zheng Y, An L, Dou Y, Liu Y (2014) Food Chem 151:198–206

    CAS  PubMed  Google Scholar 

  6. Iuga C, Alvarez-Idaboy JR, Russo N (2012) J Org Chem 12:3868–3877

    Google Scholar 

  7. Galano A, Alvarez-Diduk R, Ramirez-Silva MT, Alarcon-Angeles G, Rojas-Hernandez A (2009) Chem Phys 363:13–23

    CAS  Google Scholar 

  8. Jovanovic SV, Steenken S, Boone CW, Simic MG (1999) J Am Chem Soc 121:9677–9681

    CAS  Google Scholar 

  9. Wang Y-N, Eriksson LA (2001) Theor Chem Acc 106:158–162

    CAS  Google Scholar 

  10. Mallick S, Sarkar S, Bandyopadhyay B, Kumar P (2018) J Phys Chem A 122(1):350–363

    CAS  PubMed  Google Scholar 

  11. Kumar M, Sinha A, Francisco JS (2016) Acc Chem Res 49(5):877–883

    CAS  PubMed  Google Scholar 

  12. Liang F, Zhong W, Xiang L, Mao L, Xu Q, Kirk SR, Yin D (2019) J Catal 378:256–269

    CAS  Google Scholar 

  13. Asgari P, Hua Y, Bokka A, Thiamsiri C, Prasitwatcharakorn W, Karedath A, Chen X, Sardar S, Yum K, Leem G, Pierce BS, Nam K, Gao J, Jeon J (2019) Nat Catal 2:164–173

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Barckholtz C, Barckholtz TA, Hadad CM (1999) J Am Chem Soc 121(3):491–500

    CAS  Google Scholar 

  15. Wang L, Yang F, Zhao X, Li Y (2019) Food Chem 275:339–345

    CAS  PubMed  Google Scholar 

  16. Nantasenamat C, Isarankura-Na-Ayudhya C, Naenna T, Prachayasittikul V (2008) J Mol Graph Model 27:188–196

    CAS  PubMed  Google Scholar 

  17. Zhang H-Y, Sun Y-M, Wang X-L (2003) Chem Eur J 9:502–508

    CAS  PubMed  Google Scholar 

  18. Brinck T, Lee H-N, Jonsson M (1999) J Phys Chem 103:7094–7104

    CAS  Google Scholar 

  19. Izgorodina EI, Coote ML, Radom L (2005) J Phys Chem A 109:7558–7566

    CAS  PubMed  Google Scholar 

  20. Izgorodina EI, Brittain DRB, Hodgson JL, Krenske EH, Lin CY, Namazian M, Coote ML (2007) J Phys Chem A 111:10754–10768

    CAS  PubMed  Google Scholar 

  21. Zhao Y, Truhlar DG (2008) J Phys Chem A 112:1095–1099

    CAS  PubMed  Google Scholar 

  22. Beste A, Buchanan AC III (2009) J Org Chem 74(7):2837–2841

    CAS  PubMed  Google Scholar 

  23. Zheng Y-Z, Fu Z-M, Deng G, Guo R, Chen D-F (2020) Phytochemistry 178:112454

    CAS  PubMed  Google Scholar 

  24. Du T, Quina FH, Tunega D, Zhang J, Aquino AJA (2020) Theor Chem Acc 139:75

    CAS  Google Scholar 

  25. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    CAS  Google Scholar 

  26. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    PubMed  Google Scholar 

  27. Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  28. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    CAS  Google Scholar 

  29. Rusydi F, Madinah R, Puspitasari I, Mark-Lee WF, Ahmad A, Rusydi A (2020). Biochem Mol Biol Educ. https://doi.org/10.1002/bmb.21433

    Article  PubMed  Google Scholar 

  30. Fadilla RN, Rusydi F, Aisyah ND, Khoirunisa V, Dipojono HK, Ahmad F, Mudasir, Puspitasari I (2020) Molecules 25: 670

  31. Rusydi F, Aisyah ND, Fadilla RN, Dipojono HK, Ahmad F, Mudasir, Puspitasari I, Rusydi A (2019) Heliyon 5: e02409

  32. Fadilla RN, Aisyah ND, Dipojono HK, Rusydi F (2017) Procedia Eng 170:113–118

    CAS  Google Scholar 

  33. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Google Scholar 

  34. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB,Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V,Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV,Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D,Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A,Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng, Liang W, Hada M, Ehara M, Toyota K, Fukuda R,Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H,Vreven T, Throssell K, Montgomery JA, Jr., Peralta J E,Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin K N, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2013) Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT

  36. Glendening ED, Reed AE, Carpenter JE, Weinhold F Nbo version 3.1

  37. Mardirossian N, Head-Gordon M (2016) J Chem Theory Comput 12:4303–4325

    CAS  PubMed  Google Scholar 

  38. Jones DB, da Silva GB, Neves RFC, Duque HV, Chiari L, de Oliveira EM, Lopes MCA, da Costa RF, Varella MTN, Bettega MHF, Lima MAP, Brunger MJ (2014) J Chem Phys 141:074314

    CAS  PubMed  Google Scholar 

  39. Huber KP, Herzberg G (1979) Molecular spectra and moelcular structure IV constants of diatomic molecules. Springer, US, p 508

    Google Scholar 

  40. Young DC, Computational chemistry: A practical guide for applying techniques to real-world problems. Wiley, New York, 2001, Chp. 16, Page 138

  41. Haynes WM (2014) CRC Handbook of Chemistry and Physics, 95th ed., CRC Press, Boca Rotan, Chp.9

    Google Scholar 

  42. Lucarini M, Pedulli GF, Guerra M (2004) Chem Eur J 10:933–939

    CAS  PubMed  Google Scholar 

  43. Kamiya M, Tsuneda T, Hirao K (2002) J Chem Phys 117:6010

    CAS  Google Scholar 

  44. Parker K, Davis SR (1999) J Am Chem Soc 121:4271–4277

    CAS  Google Scholar 

  45. Zhu L, Bozzelli JW (2003) J Phys Chem A 107:3696–3703

    CAS  Google Scholar 

  46. Altarawneh M, Dlugogorski BZ, Kennedy EM, Mackie J (2010) J Phys Chem A 114:1060–1067

    CAS  PubMed  Google Scholar 

  47. Chan B, Morris M, Radom L (2011) Aust J Chem 64:394–402

    CAS  Google Scholar 

  48. Peach MJG, Helgaker T, Salek P, Keal TW, Lutnæs OB, Tozer DJ, Handyd NC (2006) Phys Chem Chem Phys 8:558–562

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank to Rizka Nur Fadilla (Universitas Airlangga, Indonesia) and Prof. Azizan Ahmad (University Kebangsaan Malaysia, Malaysia) for the insightful discussions. LSPB is grateful for the doctoral scholarship by Lembaga Pengelola Dana Pendidikan (LPDP). All calculations using Gaussian 16 software are performed at Riven Cluster, the high-performance computing facility in Research Center for Quantum Engineering Design, Universitas Airlangga, Indonesia.

Author information

Authors and Affiliations

Authors

Contributions

F.R. contributed to conceptualization; L.S.P.B, H.R., and I.P. contributed to formal analysis; L.S.P.B and V.K. were involved in investigation; F.R. and L.S.P.B contributed to methodology; I.P. provided the resources; L.S.P.B contributed to writing—original draft preparation; F.R. and H.K.D contributed to writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Febdian Rusydi.

Ethics declarations

Funding

This work was supported by Universitas Airlangga under grant scheme Riset Kolaborasi Mitra Luar Negeri 2019 no. 1148/UN3.14/LT/2019 and by Direktorat Riset dan Pengabdian Masyarakat, Deputi Bidang Penguatan Riset dan Pengembangan Kementerian Riset dan Teknologi/Badan Riset dan Inovasi Nasional, Republik Indonesia under grant scheme Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT) 2020 no. 1288r/I1.C06/PL/2020.

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Availability of Data and Materials

All data analyzed during this study are included in this published article and its supplementary information file.

Code Availability

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 811kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulo Boli, L.S., Rusydi, F., Khoirunisa, V. et al. O—H and C—H bond dissociations in non-phenyl and phenyl groups: A DFT study with dispersion and long-range corrections. Theor Chem Acc 140, 94 (2021). https://doi.org/10.1007/s00214-021-02781-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02781-6

Keywords

Navigation