Skip to main content
Log in

Effect of temperature on the structure of Pd8 and Pd7Au1 clusters: an Ab initio molecular dynamics approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) is currently one of the most utilized theoretical approaches to analyze physical and chemical properties of metal clusters, which are of interest in economically important applications such as catalysis. In this respect, the important role of temperature has been scarcely considered mainly because this variable is not part of the DFT model and other theoretical ab initio schemes. In this work, we present an ab initio molecular dynamics study of Pd8 and Pd7Au1 clusters to understand, to a degree, the effect of doping on the structural stability of palladium clusters as a function of temperature. A combined strategy using both empirical potential and DFT calculations is employed to obtain lowest-energy configurations for Pd8 and Pd7Au1 clusters, which are later subject to Born–Oppenheimer molecular dynamics simulations at finite temperatures. The structural stability as a function of temperature is evaluated through an analysis of the total energy dispersion with respect to the average energy of clusters at different thermodynamic states. Results show that the effect of doping Pd cluster with one Au atom gives rise to a decreasing of the structural stability. In the range of temperatures studied, atomic diffusion is not observed for Pd8 cluster, while Pd7Au1 cluster shows Pd-Au dimer diffusion at 300 K toward different faces of the 6-atom Pd octahedron structural motif. Preliminary data suggest that melting transition is about 250 K for this bimetallic cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability and material

Data are provided in supplementary zip files including the BOMD trajectories for both Pd8 and Pd7Au1 clusters.

References

  1. Seminario JM, Agapito LA, Yan L, Balbuena PB (2005) Density functional theory study of adsorption of OOH on Pt-based bimetallic clusters alloyed with Cr Co, and Ni. Chem Phys Lett 410:275–281

    Article  CAS  Google Scholar 

  2. Larios-Rodríguez EA, Castillón-Barraza FF, Herrera-Urbina R, Santiago U, Posada-Amarillas A (2017) Synthesis of AucorePdshell nanoparticles by a green chemistry method and characterization by HAADFSTEM imaging. J Clust Sci 28:2075–2086

    Article  Google Scholar 

  3. Cristoforetti G, Pitzalis E, Spiniello R, Ishak R, Muniz-Miranda M (2011) Production of palladium nanoparticles by pulsed laser ablation in water and their characterization. J Phys Chem C 115:5073–5083

    Article  CAS  Google Scholar 

  4. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine: NBM 6:257–262

  5. Heck RF, Nolley JP (1972) Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J Org Chem 37:2320–2322

    Article  CAS  Google Scholar 

  6. Mizoroki T, MoriK K, Ozaki A (1971) Arylation of olefin with aryl iodide catalyzed by palladium. Bull Chem Soc Jap 44:581

    Article  CAS  Google Scholar 

  7. Miyaura N, Yamada K, Suzuki A (1979) A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett 20:3437–3440

    Article  Google Scholar 

  8. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483

    Article  CAS  Google Scholar 

  9. Yin L, Liebscher J (2007) Carbon−carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107:133–173

    Article  CAS  Google Scholar 

  10. Roglans A, Pla-Quintana A, Moreno-Mañas M (2006) Diazonium salts as substrates in palladium-catalyzed cross-coupling. Chem Rev 106:4622–4643

    Article  CAS  Google Scholar 

  11. Tseng JY, Cheng HT (2020) Catalytic ethylene oxidation by Cu–Au core–shell nanoclusters: a computational study. Theor Chem Acc 139:57

    Article  CAS  Google Scholar 

  12. Saxena R, Saravindakshan SU, Qureshi M, De M (2020) Supported palladium nanoclusters: Morphological modification towards enhancement of catalytic performance using surfactant-assisted metal deposition. Appl Nanosci 10:1793–1809

    Article  CAS  Google Scholar 

  13. Klaja O, Szczygieł J, Trawczyński J, Szyja BM (2017) The CO2 dissociation mechanism on the small copper clusters-The influence of geometry. Theor Chem Acc 136:98

    Article  Google Scholar 

  14. Gálvez-González LE, Juárez-Sánchez JO, Pacheco-Contreras R, IGarzón IL, Paz-Borbón LO, Posada-Amarillas A (2018) CO2 adsorption on gas-phase Cu4−xPtx (x = 0−4) clusters: A DFT study. Phys Chem Chem Phys 20: 17071-17080

  15. Gálvez-González LE, Alonso JA, Paz-Borbón LO, Posada-Amarillas A (2019) H2 adsorption on Cu4‑xMx (M = Au, Pt; x = 0−4) clusters: Similarities and differences as predicted by density functional theory. J Phys Chem C 123: 30768−30780

  16. Khirsariya P, Mewada RK (2013) Single step oxidation of methane to methanol-Towards better understanding. Procedia Eng 51:409–415

    Article  CAS  Google Scholar 

  17. Petrov AW, Ferri D, Krumeich F, Nachtegaal M, van Bokhoven JA, Kröcher O (2018) Stable complete methane oxidation over palladium based zeolite catalysts. Nature Commun 9:2545

    Article  Google Scholar 

  18. Cheng D, Atanasov IS, Hou M (2011) Influence of the environment on equilibrium properties of Au-Pd clusters. Eur Phys J D 64:37–44

    Article  CAS  Google Scholar 

  19. Cristoforetti G, Pitzalis E, Spiniello R (2011) Production of palladium nanoparticles by pulsed laser ablation in water and their characterization. J Phys Chem C 115:5073–5083

    Article  CAS  Google Scholar 

  20. Ning X, Zhan L, Wang H, Yu H, Peng F (2018) Deactivation and regeneration of in situ formed bismuth-promoted platinum catalyst for the selective oxidation of glycerol to dihydroxyacetone. New J Chem 42:18837–18843

    Article  CAS  Google Scholar 

  21. Luo C, Zhou C, Wu J, Kumar TJD, Balakrishnan N, Forrey RC, Cheng H (2007) First principles study of small palladium cluster growth and isomerization. Int J Quantum Chem 107:1632–1641

    Article  CAS  Google Scholar 

  22. Köster A, Geudtner G, Alvarez-Ibarra A, Calaminici P, Casida M, Carmona-Espindola J, Dominguez V, Flores-Moreno R, Gamboa G, Goursot A, Heine T, Ipatov A, de la Lande A, Janetzko F, del Campo J, Mejia-Rodriguez D, Reveles JU, Vasquez-Perez J, Vela A, Zuniga-Gutierrez B, Salahub DR (2018) deMon2k, version 5. The deMon developers, Cinvestav, México City

  23. Pacheco-Contreras R, Juárez-Sánchez JO, Dessens-Félix M, Aguilera-Granja F, Fortunelli A, Posada-Amarillas A (2018) Empirical-potential global minima and DFT local minima of trimetallic AglAumPtn (l + m + n = 13, 19, 33, 38) clusters. Comp Mater Sci 141:30–40

    Article  CAS  Google Scholar 

  24. Wales DJ (1997) Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A 101:5111–5116

    Article  CAS  Google Scholar 

  25. Posada-Amarillas A, Garzón IL (1996) Microstructural analiysis of simulated liquid and amorphous Ni. Phys Rev B 53:8363–8368

    Article  CAS  Google Scholar 

  26. Borbón-González DJ, Fortunelli A, Barcaro G, Sementa L, Johnston RL, Posada-Amarillas A (2013) Global minimum Pt13M20 (M = Ag, Au, Cu, Pd) dodecahedral core-shell clusters. J Phys Chem A 117:14261–14266

  27. Guerrero-Jordan J, Cabellos JL, Johnston RL, Posada-Amarillas A (2018) Theoretical investigation of the structures of unsupported 38-atom CuPt clusters. Eur Phys J B 91:123

    Article  Google Scholar 

  28. Cleri F, Rosato V (1993) Tight-binding potentials for transition metals and alloys. Phys Rev B 48:22–33

    Article  CAS  Google Scholar 

  29. Ismail R, Johnston RL (2010) Investigation of the structures and chemical ordering of small Pd-Au clusters as a function of composition and potential parameterisation. Phys Chem Chem Phys 12:8607–8619

    Article  CAS  Google Scholar 

  30. Heard CJ, Johnston RL, Schön JC (2015) Energy landscape exploration of sub-nanometre copper-silver clusters. ChemPhysChem 16:1461–1469

    Article  CAS  Google Scholar 

  31. Luna-Valenzuela A, Alonso, JA, Cabellos, JL, Posada-Amarillas, A (2021) Effects of van der Waals interactions on the structure and stability of Cu8-xPdx (x = 0, 4, 8) cluster isomers. Mater. Today Commun. 26:102024

  32. López-Sosa L, Cruz-Martínez H, Solorza-Feria O, Calaminici P (2019) Nickel and copper doped palladium clusters from a first-principles perspective. Int J Quantum Chem 119:e26013

  33. Yamijala SSRKC, Nava G, Ali ZA, Beretta D, Wong BM (2020) Harnessing plasma environments for ammonia catalysis: Mechanistic insights from experiments and large-scale ab initio molecular dynamics. J Phys Chem Lett 11:10469–10475

    Article  CAS  Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  35. Dolg M, Cao X (2012) Relativistic pseudopotentials: Their development and scope of applications. Chem Rev 112:403–480

    Article  CAS  Google Scholar 

  36. Calaminici P, Janetzko F, Köster AM, Mejia-Olvera R, Zuniga-Gutierrez B (2007) Density functional theory optimized basis sets for gradient corrected functionals: 3d transition metal systems. J Chem Phys 126:044108

  37. Krüger S, Vent S, Nörtemann F, Staufer M, Rösch N (2001) The average bond length in Pd clusters Pdn, n = 4−309: A density-functional case study on the scaling of cluster properties. J Chem Phys 115:2082–2087

    Article  Google Scholar 

  38. Cuny J, Tarrat N, Spiegelman F, Huguenot A, Rapacioli M (2018) Density-functional tight-binding approach for metal clusters, nanoparticles, surfaces and bulk: application to silver and glod. J. Phys.: Condens. Matter 30:303001

  39. Ferrando R (2013) In: Mariscal MM, Oviedo OA, Marcos-Leiva EP (ed) Metal Clusters and Nanoalloys: From Modeling to Applications, Springer, New York

  40. Cheng D, Wang W (2012) Tailoring of Pd–Pt bimetallic clusters with high stability for oxygen reduction reaction. Nanoscale 4:2408–2415

    Article  CAS  Google Scholar 

  41. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    Article  CAS  Google Scholar 

  42. Gamboa GU, Calaminici P, Geudtner G, Köster AM (2008) How important are temperature effects for cluster polarizabilities? J Phys Chem A 112:11969–11971

    Article  CAS  Google Scholar 

  43. Vásquez-Pérez JM, Martínez GUG, Köster AM, Calaminici P (2009) The discovery of unexpected isomers in sodium heptamers by Born–Oppenheimer molecular dynamics. J Chem Phys 131:124126

  44. Alvarez-Ibarra A, Calaminici P, Goursot A, Gómez-Castro CZ, Grande-Aztatzi R, Mineva T, Salahub DR, Vásquez-Pérez JM, Vela A, Zuniga-Gutierrez B, Köster AM (2015) Chapter 7-First principles computational biochemistry with deMon2k In: Ul-Haq Z, Madura, JD (ed) Frontiers in Computational Chemistry; Bentham Science Publishers: Sharjah, UAE.

  45. de la Lande A, Alvarez-Ibarra A, Hasnaoui K, Cailliez F, Wu X, Mineva T, Cuny J, Calaminici P, López-Sosa L, Geudtner G, Navizet I, Garcia Iriepa C, Salahub DR, Köster AM (2019) Molecular simulations with in-deMon2k QM/MM, a tutorial-review. Molecules 24:1653

    Article  Google Scholar 

  46. Karabacak M, Özçelik S, Güvenç ZB (2004) Dynamics of phase changes and melting of Pd7 clusters. Acta Phys Slovaca 54:233–243

    CAS  Google Scholar 

  47. Zanti G, Peeters D (2010) DFT study of bimetallic palladium-gold clusters PdnAum of low nuclearities (n + m ≤ 14). J Phys Chem A 114:10345–10356

    Article  CAS  Google Scholar 

  48. Passananti M, Zapadinsky E, Zanca T, Kangasluoma J, Myllys N, Rissanen MP, Kurtén T, Ehn M, Attoui M, Vehkamäki H (2019) How well can we predict cluster fragmentation inside a mass spectrometer? Chem Comm 55:5946–5949

    Article  CAS  Google Scholar 

  49. Oderji HY, Ding H (2011) Determination of melting mechanism of Pd24Pt14 nanoalloy by multiple histogram method via molecular dynamics simulations. Chem Phys 388:23–30

    Article  CAS  Google Scholar 

  50. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  CAS  Google Scholar 

  51. Hannemann A, Schön JC, Jansen M, Sibani P (2005) Nonequilibrium dynamics in amorphous Si3B3N7. J Phys Chem B 109:11770–11776

    Article  CAS  Google Scholar 

  52. Vásquez-Pérez JM, Calaminici P, Köster AM (2013) Heat capacities from Born-Oppenheimer molecular dynamics simulations: Al27+ and Al28+. Comp Theor Chem 1021:229–232

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Conacyt for funding project No. A1-S-39326. AL-V also acknowledges Conacyt for the award of a Ph.D. scholarship.

Funding

APA is grateful to Consejo Nacional de Ciencia y Tecnología for funding project No. A1-S-39326 AL-V acknowledges Consejo Nacional de Tecnología for the award of a Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Posada-Amarillas.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “20th deMon Developers Workshop”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luna-Valenzuela, A., Cabellos, J.L. & Posada-Amarillas, A. Effect of temperature on the structure of Pd8 and Pd7Au1 clusters: an Ab initio molecular dynamics approach. Theor Chem Acc 140, 86 (2021). https://doi.org/10.1007/s00214-021-02771-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02771-8

Keywords

Navigation