Skip to main content
Log in

Understanding the impact of correlation on bond length alternation in polyenes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This article analyzes the electronic factors governing bond length alternation (BLA) in linear polyenes. The impact of the various effects is illustrated on small all-trans polyenes, namely butadiene, hexatriene and octatetraene prototype molecules. It is well known that self-consistent-field single determinant treatments overestimate the bond length alternation and the paper aims to identify physical effects of correlation which correct this defect. The question is addressed using an orthogonal valence bond-type formalism in which the wave function is expressed in terms of strongly localized bonding and antibonding molecular orbitals. This paper shows that dynamic polarization effects of π orbitals accounted for in the full-π complete active space wave function significantly reduce bond alternation. These effects are brought by single excitations applied on the inter-bond charge transfer determinants. The dynamic polarization of σ bonds, of either CC or CH character, is analyzed afterward by either enlarging the active space or by adding the 1hole-1particle excitations. It is shown that these effects also decrease the BLA and increase the coefficients of the charge transfer determinants. Moreover, the relation with dynamic polarization of ligand-to-metal and metal-to-ligand charge transfer (LMCT and MLCT, respectively) components in magnetic transition-metal compounds is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tsuji M, Huzinaga S, Hasino T (1960) Bond alternation in long polyenes. Rev Mod Phys 32:425–427. https://doi.org/10.1103/RevModPhys.32.425

    Article  CAS  Google Scholar 

  2. Pople JA, Walmsley SH (1962) Bond alternation defects in long polyene molecules. Mol Phys 5:15–20. https://doi.org/10.1080/00268976200100021

    Article  CAS  Google Scholar 

  3. Salem L (1966) The molecular orbital theory of conjugated systems. Benjamin In, New York

    Google Scholar 

  4. Harris RA, Falicov LM (1969) Self-consistent theory of bond alternation in polyenes: normal state, charge-density waves, and spin-density waves. J Chem Phys 51:5034–5041. https://doi.org/10.1063/1.1671900

    Article  CAS  Google Scholar 

  5. Tenti L, Giner E, Malrieu J-P, Angeli C (2017) Strongly localized approaches for delocalized systems. I. Ground state of linear polyenes. Comput Theor Chem 1116:102–111. https://doi.org/10.1016/j.comptc.2017.01.021

    Article  CAS  Google Scholar 

  6. Szalay PG, Karpfen A, Lischka H (1987) SCF and electron correlation studies on structures and harmonic in-plane force fields of ethylene, t r a n s 1,3-butadiene, and all- t r a n s 1,3,5-hexatriene. J Chem Phys 87:3530–3538. https://doi.org/10.1063/1.452998

    Article  CAS  Google Scholar 

  7. Lee JY, Hahn O, Lee SJ et al (1995) Ab initio study of s-trans-1,3-Butadiene using various levels of basis set and electron correlation: force constants and exponentially scaled vibrational frequencies. J Phys Chem 99:1913–1918. https://doi.org/10.1021/j100007a020

    Article  CAS  Google Scholar 

  8. Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38:762–785. https://doi.org/10.1021/ja02261a002

    Article  CAS  Google Scholar 

  9. Kupka T, Buczek A, Broda MA et al (2016) DFT studies on the structural and vibrational properties of polyenes. J Mol Model 22:101. https://doi.org/10.1007/s00894-016-2969-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jacquemin D, Adamo C (2011) Bond length alternation of conjugated oligomers: wave function and DFT benchmarks. J Chem Theory Comput 7:369–376. https://doi.org/10.1021/ct1006532

    Article  CAS  PubMed  Google Scholar 

  11. Calzado CJ, Angeli C, Taratiel D et al (2009) Analysis of the magnetic coupling in binuclear systems. III. The role of the ligand to metal charge transfer excitations revisited. J Chem Phys. Doi 10(1063/1):3185506

    Google Scholar 

  12. Diner S, Malrieu JP, Claverie P (1969) Localized bond orbitals and the correlation problem: I. The perturbation calculation of the ground state energy. Theor Chim Acta 13:1–17. https://doi.org/10.1007/BF00527316

    Article  CAS  Google Scholar 

  13. Malrieu JP, Claverie P, Diner S (1969) Localized bond orbitals and the correlation problem: II. Application to pi-electron systems. Theor Chim Acta 13:18–45. https://doi.org/10.1007/BF00527317

    Article  CAS  Google Scholar 

  14. Diner S, Malrieu JP, Jordan F, Gilbert M (1969) Localized bond orbitals and the correlation problem: III. Energy up to the third-order in the zero-differential overlap approximation. Application to ?-electron systems. Theor Chim Acta 15:100–110. https://doi.org/10.1007/BF00528246

    Article  CAS  Google Scholar 

  15. Angeli C, Malrieu J-P (2008) Aromaticity: an ab initio evaluation of the properly cyclic delocalization energy and the π-delocalization energy distortivity of benzene. J Phys Chem A 112:11481–11486. https://doi.org/10.1021/jp805870r

    Article  CAS  PubMed  Google Scholar 

  16. Maynau D, DoLo, a development of Laboratoire de Chimie et Physique Quantiques de Toulouse. https://git.irsamc.ups-tlse.fr/LCPQ/Cost_package

  17. Maynau D, Evangelisti S, Guihéry N et al (2002) Direct generation of local orbitals for multireference treatment and subsequent uses for the calculation of the correlation energy. J Chem Phys 116:10060. https://doi.org/10.1063/1.1476312

    Article  CAS  Google Scholar 

  18. Brillouin L (1933) La Méthode du Champ Self-Consistent. Hermann, Paris

    Google Scholar 

  19. Brillouin L (1934) Les champs “self-consistents” de Hartree et de Fock. Hermann, Paris

    Google Scholar 

  20. Karlström G, Lindh R, Malmqvist P-Å et al (2003) MOLCAS: a program package for computational chemistry. Comput Mater Sci 28:222–239. https://doi.org/10.1016/S0927-0256(03)00109-5

    Article  CAS  Google Scholar 

  21. Veryazov V, Widmark P-O, Serrano-Andrés L et al (2004) MOLCAS as a development platform for quantum chemistry software. Int J Quantum Chem 100:626–635. https://doi.org/10.1002/qua.20166

    Article  CAS  Google Scholar 

  22. Aquilante F, Autschbach J, Carlson RK et al (2016) Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table: molcas 8. J Comput Chem 37:506–541. https://doi.org/10.1002/jcc.24221

    Article  CAS  PubMed  Google Scholar 

  23. Maynau D, Ben Amor N, Hoyau S, et al CASDI, a development of Laboratoire de Chimie et Physique Quantiques de Toulouse. https://git.irsamc.ups-tlse.fr/LCPQ/Cost_package

  24. Ben Amor N, Maynau D, Sánchez-Marín J et al (1998) Size-consistent self-consistent configuration interaction from a complete active space: excited states. J Chem Phys 109:8275–8282

    Article  CAS  Google Scholar 

  25. Roos BO, Lindh R, Malmqvist P-Å et al (2004) Main group atoms and dimers studied with a new relativistic ANO basis set. J Phys Chem A 108:2851–2858. https://doi.org/10.1021/jp031064+

    Article  CAS  Google Scholar 

  26. Malrieu J-P, Guihéry N, Calzado CJ, Angeli C (2007) Bond electron pair: its relevance and analysis from the quantum chemistry point of view. J Comput Chem 28:35–50. https://doi.org/10.1002/jcc.20546

    Article  CAS  PubMed  Google Scholar 

  27. Hiberty PC, Shaik S (2002) Breathing-orbital valence bond method: a modern valence bond method that includes dynamic correlation. Theor Chem Acc Theory Comput Model Theor Chim Acta 108:255–272. https://doi.org/10.1007/s00214-002-0364-8

    Article  CAS  Google Scholar 

  28. Calzado CJ, Cabrero J, Malrieu JP, Caballol R (2002) Analysis of the magnetic coupling in binuclear complexes. I. Physics of the coupling. J Chem Phys 116:2728–2747. https://doi.org/10.1063/1.1430740

    Article  CAS  Google Scholar 

  29. Giner E, Angeli C (2015) Metal-ligand delocalization and spin density in the CuCl 2 and [CuCl 4 ] 2− molecules: some insights from wave function theory. J Chem Phys. https://doi.org/10.1063/1.4931639

    Article  PubMed  Google Scholar 

  30. Suaud N, Ruamps R, Guihéry N, Malrieu J-P (2012) A strategy to determine appropriate active orbitals and accurate magnetic couplings in organic magnetic systems. J Chem Theory Comput 8:4127–4137. https://doi.org/10.1021/ct300577y

    Article  CAS  PubMed  Google Scholar 

  31. Hoffmann R, Malrieu J (2020) Simulation vs. understanding: a tension, in quantum chemistry and beyond. Part B. The march of simulation, for better or worse. Angew Chem Int Ed 59:13156–13178. https://doi.org/10.1002/anie.201910283

    Article  CAS  Google Scholar 

  32. Rapacioli M, Simon A, Dontot L, Spiegelman F (2012) Extensions of DFTB to investigate molecular complexes and clusters: extensions of DFTB to investigate molecular complexes and clusters. Phys Status Solidi B 249:245–258. https://doi.org/10.1002/pssb.201100615

    Article  CAS  Google Scholar 

  33. Rapacioli M, Spiegelman F, Talbi D et al (2009) Correction for dispersion and Coulombic interactions in molecular clusters with density functional derived methods: application to polycyclic aromatic hydrocarbon clusters. J Chem Phys. https://doi.org/10.1063/1.3152882

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to Fernand Spiegelman for his scientific openness, generous support, stimulating discussions and for his valuable friendship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Guihéry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “Festschrift in honour of Fernand Spiegelmann”.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suaud, N., Ben Amor, N., Guihéry, N. et al. Understanding the impact of correlation on bond length alternation in polyenes. Theor Chem Acc 140, 117 (2021). https://doi.org/10.1007/s00214-021-02769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02769-2

Keywords

Navigation