Skip to main content
Log in

Explicit solvation effects on low-index Fe surfaces and small particles as adsorbents of Arsenic species: a DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations were carried out on hydroxylated and solvated (H&S) Fe substrates. Fe (110) and (111) extended surfaces as well as clusters of 32 and 59 atoms, and a nanoparticle of 80 atoms were studied as adsorbent substrates of harmful As species. Arsenious (H3AsO3) and arsenic (H3AsO4) acids are physisorbed on the H&S Fe(110) but chemisorbed on the H&S Fe(111) surface. The open-packed plane of the (111) surface, with free active sites, allows better interaction with the acid molecules. The small hydroxylated cluster, Fe32, has shown the best activity as adsorbent of H3AsO3. Electronic charge transfer occurs not only from Fe atoms that directly interact with the acid molecule, but neighbouring Fe atoms are also oxidized. This work presents clear evidence that these spherical Fe aggregates, formed mainly by (111) faces and with an important percentage of low-coordination sites, are excellent adsorbent substrates of H3AsO3 and should be considered as a reference to search for new supported catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nriagu J, Bhattacharya P, Mukherjee A et al (2007) Arsenic in soil and groundwater: an overview. Arsen Soil Groundw Environ Biogeochem Interact Heal Eff Remediat 9:3–60. https://doi.org/10.1016/s0927-5215(06)09001-1

    Article  CAS  Google Scholar 

  2. Zhou Z, Yu Y, Ding Z et al (2019) Competitive adsorption of arsenic and fluoride on 2 0 1 TiO 2. Appl Surf Sci 466:425–432. https://doi.org/10.1016/j.apsusc.2018.10.052

    Article  CAS  Google Scholar 

  3. Watts H, Tribe L, Kubicki J (2014) Arsenic adsorption onto minerals: connecting experimental observations with density functional theory calculations. Minerals 4:208–240. https://doi.org/10.3390/min4020208

    Article  Google Scholar 

  4. Huang X, Zhu C, Wang Q, Yang G (2020) Mechanisms for As(OH)3 and H3AsO4 adsorption at anhydrous and hydrated surfaces of gibbsite and possibility for anionic As(III) and As(V) formation. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.146494

    Article  PubMed  Google Scholar 

  5. Chen C, Xu J, Yang Z et al (2017) One-pot synthesis of ternary zero-valent iron/phosphotungstic acid/g-C 3 N 4 composite and its high performance for removal of arsenic(V) from water. Appl Surf Sci 425:423–431. https://doi.org/10.1016/j.apsusc.2017.07.049

    Article  CAS  Google Scholar 

  6. Nikić J, Tubić A, Watson M et al (2019) Arsenic removal from water by green synthesized magnetic nanoparticles. Water (Switzerland). https://doi.org/10.3390/w11122520

    Article  Google Scholar 

  7. Dzade NY, Roldan A, De Leeuw NH (2017) Structures and properties of As(OH)3 adsorption complexes on hydrated mackinawite (FeS) surfaces: a DFT-D2 study. Environ Sci Technol 51:3461–3470. https://doi.org/10.1021/acs.est.7b00107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim HK, Jeong SW, Yang JE, Choi YJ (2019) Highly efficient and stable removal of arsenic by live cell fabricated magnetic nanoparticles. Int J Mol Sci. https://doi.org/10.3390/ijms20143566

    Article  PubMed  PubMed Central  Google Scholar 

  9. De FM, Yuan P, Chen TH et al (2010) Synthesis, characterization and size control of zerovalent iron nanoparticles anchored on montmorillonite. Chinese Sci Bull 55:1092–1099. https://doi.org/10.1007/s11434-010-0062-1

    Article  CAS  Google Scholar 

  10. Meyerstein D, Adhikary J, Burg A et al (2020) Zero-valent iron nanoparticles entrapped in SiO 2 sol-gel matrices : a catalyst for the reduction of several pollutants. Catal Commun. https://doi.org/10.1016/j.catcom.2019.105819

    Article  Google Scholar 

  11. Shi D, Zhu G, Zhang X et al (2019) Ultra-small and recyclable zero-valent iron nanoclusters for rapid and highly efficient catalytic reduction of p-nitrophenol in water. Nanoscale. https://doi.org/10.1039/c8nr08302a

    Article  PubMed  PubMed Central  Google Scholar 

  12. Otero GS, Pascucci B, Branda MM et al (2016) Evaluating the size of Fe nanoparticles for ammonia adsorption and dehydrogenation. Comput Mater Sci 124:220–227. https://doi.org/10.1016/j.commatsci.2016.07.040

    Article  CAS  Google Scholar 

  13. Taylor P, Li X, Elliott DW et al (2006) Critical reviews in solid state and materials sciences zero-valent iron nanoparticles for abatement of environmental pollutants : materials and engineering aspects zero-valent iron nanoparticles for abatement of environmental pollutants : materials and en. Taylor Fr 31:111–122. https://doi.org/10.1080/10408430601057611

    Article  CAS  Google Scholar 

  14. Li S, Wang W, Liang F, Zhang WX (2017) Heavy metal removal using nanoscale zero-valent iron (nZVI): theory and application. J Hazard Mater 322:163–171. https://doi.org/10.1016/j.jhazmat.2016.01.032

    Article  CAS  PubMed  Google Scholar 

  15. Hao L, Liu M, Wang N, Li G (2018) A critical review on arsenic removal from water using iron-based adsorbents. RSC Adv 8:39545–39560. https://doi.org/10.1039/c8ra08512a

    Article  CAS  Google Scholar 

  16. Yan W, Vasic R, Frenkel AI, Koel BE (2012) Intraparticle reduction of arsenite (As(III)) by nanoscale zerovalent iron (nZVI) investigated with in situ X-ray absorption spectroscopy. Environ Sci Technol 46:7018–7026. https://doi.org/10.1021/es2039695

    Article  CAS  PubMed  Google Scholar 

  17. Greenlee LF, Torrey JD, Amaro RL, Shaw JM (2012) Kinetics of zero valent iron nanoparticle oxidation in oxygenated water. Environ Sci Technol 46:12913–12920. https://doi.org/10.1021/es303037k

    Article  CAS  PubMed  Google Scholar 

  18. Aquino AJA, Tunega D, Haberhauer G et al (2007) Quantum chemical adsorption studies on the (110) surface of the mineral goethite. J Phys Chem C 111:877–885. https://doi.org/10.1021/jp0649192

    Article  CAS  Google Scholar 

  19. Popovici E, Dumitrache F, Morjan I et al (2007) Iron/iron oxides core-shell nanoparticles by laser pyrolysis: Structural characterization and enhanced particle dispersion. Appl Surf Sci 254:1048–1052. https://doi.org/10.1016/j.apsusc.2007.09.022

    Article  CAS  Google Scholar 

  20. Alfonso LL, Fuente S, Branda MM (2019) Applied Surface Science Electronic and magnetic properties of the adsorption of as harmful species on zero-valent Fe surfaces, clusters and nanoparticules. Appl Surf Sci 465:715–723. https://doi.org/10.1016/j.apsusc.2018.09.199

    Article  CAS  Google Scholar 

  21. Alfonso Tobón LL, Branda MM (2020) Predicting the adsorption capacity of iron nanoparticles with metallic impurities (Cu, Ni and Pd) for arsenic removal: a DFT study. Adsorption 26:127–139. https://doi.org/10.1007/s10450-019-00177-4

    Article  CAS  Google Scholar 

  22. Conrad EH (1991) The stability of low index metal surfaces to topological defects. Int J Mod Phys B 5:427–459

    Article  Google Scholar 

  23. Huang R, Wen YH, Zhu ZZ, Sun SG (2011) Structure and stability of platinum nanocrystals: from low-index to high-index facets. J Mater Chem 21:11578–11584. https://doi.org/10.1039/c1jm10125k

    Article  CAS  Google Scholar 

  24. Chutia A, Silverwood IP, Farrow MR et al (2016) Adsorption of formate species on Cu(h, k, l) low index surfaces. Surf Sci 653:45–54. https://doi.org/10.1016/j.susc.2016.05.002

    Article  CAS  Google Scholar 

  25. Jiao Z, Liu QJ, Liu FS, Tang B (2017) Structural and electronic properties of low-index surfaces of NbAl 3 intermetallic with first-principles calculations. Appl Surf Sci 419:811–816. https://doi.org/10.1016/j.apsusc.2017.05.090

    Article  CAS  Google Scholar 

  26. Destefani TA, Lavansdoski Onaga G, de Farias MA et al (2018) Stabilization of spherical nanoparticles of iron(III) hydroxides in aqueous solution by wormlike micelles. J Colloid Interface Sci 513:527–535. https://doi.org/10.1016/j.jcis.2017.11.035

    Article  CAS  PubMed  Google Scholar 

  27. Saif S, Tahir A, Chen Y (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6:1–26. https://doi.org/10.3390/nano6110209

    Article  CAS  Google Scholar 

  28. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  Google Scholar 

  29. Tahmasebi S, Jerkiewicz G, Baranton S et al (2018) How stable are spherical platinum nanoparticles applied to fuel cells? J Phys Chem C 122:11765–11776. https://doi.org/10.1021/acs.jpcc.7b10617

    Article  CAS  Google Scholar 

  30. Pack JD, Monkhorst HJ (1977) Special points for Brillonin-zone integrations. Phys Rev B 16:1748–1749

    Article  Google Scholar 

  31. Park KW, Kolpak AM (2019) Optimal methodology for explicit solvation prediction of band edges of transition metal oxide photocatalysts. Commun Chem 2:1–10. https://doi.org/10.1038/s42004-019-0179-3

    Article  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  33. Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48:48–51. https://doi.org/10.1103/PhysRevB.48.13115

    Article  Google Scholar 

  34. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:11–19. https://doi.org/10.1103/PhysRevB.59.1758

    Article  Google Scholar 

  35. Blöchl P (1994) Projector augmented wave method. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.48.13115

    Article  Google Scholar 

  36. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dis- persion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  37. Hanson RM (2010) Jmol-a paradigm shift in crystallographic visualization. J Appl Crystallogr 43:1250–1260. https://doi.org/10.1107/S0021889810030256

    Article  CAS  Google Scholar 

  38. Scott AP, Radom L (1996) Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100:16502–16513. https://doi.org/10.1021/jp960976r

    Article  CAS  Google Scholar 

  39. Bader RFW, Matta CF (2004) Atomic charges are measurable quantum expectation values: a rebuttal of criticisms of QTAIM charges. J Phys Chem A 108:8385–8394. https://doi.org/10.1021/jp0482666

    Article  CAS  Google Scholar 

  40. Bader RFW, Matta CF (2013) Atoms in molecules as non-overlapping, bounded, space-filling open quantum systems. Found Chem 15:253–276. https://doi.org/10.1007/s10698-012-9153-1

    Article  CAS  Google Scholar 

  41. Liu S, Tian X, Wang T et al (2015) Coverage dependent water dissociative adsorption on the clean and O-precovered Fe(111) surfaces. J Phys Chem C 119:11714–11724. https://doi.org/10.1021/acs.jpcc.5b02297

    Article  CAS  Google Scholar 

  42. Müller K, Ciminelli VST, Dantas MSS, Willscher S (2010) A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Res 44:5660–5672. https://doi.org/10.1016/j.watres.2010.05.053

    Article  CAS  PubMed  Google Scholar 

  43. Dzade NY, De Leeuw NH (2018) Density functional theory characterization of the structures of H3AsO3 and H3AsO4 adsorption complexes on ferrihydrite. Environ Sci Process Impacts 20:977–987. https://doi.org/10.1039/c7em00608j

    Article  CAS  PubMed  Google Scholar 

  44. Baltazar SE, Romero AH, Salgado M (2017) Adsorption of As(III) and As(V) compounds on Fe3O4(0 0 1) surfaces: a first principle study. Comput Mater Sci 127:110–120. https://doi.org/10.1016/j.commatsci.2016.10.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support by CONICET and the PICT 2014-1778.

Author information

Authors and Affiliations

Authors

Contributions

LLAT: Methodology. Investigation. Original draft preparation. Writing. Visualization. MMB: Methodology. Conceptualization. Original draft preparation. Writing. Reviewing and Editing. Supervision.

Corresponding authors

Correspondence to Leslie L. Alfonso Tobón or María M. Branda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobón, L.L.A., Branda, M.M. Explicit solvation effects on low-index Fe surfaces and small particles as adsorbents of Arsenic species: a DFT study. Theor Chem Acc 140, 67 (2021). https://doi.org/10.1007/s00214-021-02767-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02767-4

Keywords

Navigation