Skip to main content
Log in

A comprehensive investigation of structural features, electron delocalization, optoelectronic and anti-corrosion characteristics in furan oligomers by DFT/TDDFT method

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The furan oligomer with 1π-bridge to 5π-bridge has been appraised for optoelectronic properties, using Density Functional Theory and Time Dependent Density Functional Theory (DFT/TDDFT) methods. Frontier Molecular Orbital analysis aids in band gap calculation of furan oligomers and limelight the Highest Occupied Molecular Orbitals (HOMOs) lobes localized on π-bridge and donor & LUMOs are localized on π-bridge and acceptor moiety. Values of common aromaticity indices include Harmonic Oscillator Model of Aromaticity (HOMA) and Bird’s (Aromaticity Index) AI for electronic delocalization indicates high magnitude of aromaticity at acceptor end in furan oligomers, and also the magnitude increases with the increase in the number of π-bridges. The hyperpolarizability (β◦) values show many-fold degree of enhancement in its magnitude by the addition of π-bridge. The absorption maxima of furan oligomers in gas and Dichloromethane medium (DCM) are calculated through TDDFT calculations. Polarizable continuum model (PCM) analysis demonstrates that furan oligomer shows positive solvatochromism. Natural Bond Orbital analysis helps to sustain the evidence for delocalization in these systems. Overall the furan oligomer with more π-bridge shows, an enhanced aromaticity through electronic delocalization which is very helpful to enhance optoelectronic property and anti-corrosion ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reynolds J, Skotheim TA (2007) Handbook of conducting polymers, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  2. Mullen K, Wegner G (eds) (1998) Electronic materials: the oligomer approach. Wiley, Weinheim

    Google Scholar 

  3. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474

    Article  CAS  PubMed  Google Scholar 

  4. Katz HE, Bao ZJ (2000) The physical chemistry of organic field-effect transistors. Phys Chem B 104:671–678

    Article  CAS  Google Scholar 

  5. Facchetti A (2007) Semiconductors for organic transistors. Mater Today 10:28–37

    Article  CAS  Google Scholar 

  6. Zhang L, Colella NS, Cherniawski BP, Mannsfeld SC, Briseno AL (2014) Oligothiophene semiconductors: synthesis characterization and applications for organic devices. ACS Appl Mater Interfaces 6:5327–5343

    Article  CAS  PubMed  Google Scholar 

  7. Holcombe TW, Norton JE, Rivnay J, Woo CH, Goris L, Piliego C, Griffini G, Sellinger A, Bredas JL, Salleo A, Frechet JM (2011) Steric control of the donor/acceptor Interface: implications in organic photovoltaic charge generation. J Am Chem Soc 133:12106–12114

    Article  CAS  PubMed  Google Scholar 

  8. Beaujuge PM, Amb CM, Reynolds JR (2010) Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions. Acc Chem Res 44:1396–1407

    Article  Google Scholar 

  9. Wang S, Oldham WJ Jr, Hudack RA Jr, Bazan GC (2000) Synthesis morphology and optical properties of Tetrahedral Oligo (phenylenevinylene). Mater J Chem Soc. 122:5695–5709

    CAS  Google Scholar 

  10. Gidron O, Diskin-Posner Y, Bendikov M (2010) α Oligofurans. J Am Chem Soc 132:2148–4150

    Article  CAS  PubMed  Google Scholar 

  11. Perepichka IF, Perepichk DF (2009) Handbook of thiophene-based materials. Wiley, Weinheim

    Book  Google Scholar 

  12. Fichou D (2008) Handbook of oligo and polythiophenes. Wiley, Hoboken

    Google Scholar 

  13. Mishra A, Ma CQ, Bauerle P (2009) Functional oligothiophenes-molecular design for multidimensional nanoarchitechtures and their applications. Chem ReV 109:1141–1276

    Article  CAS  PubMed  Google Scholar 

  14. Perepichka IF, Perepichka DF, Meng H, Wudl F (2005) Light emitting polythiophenes. ADV Mater 17:2281

    Article  CAS  Google Scholar 

  15. Bauerle P (1998) In: Electronic materials: the oligomer approach Eds. Wiley-VCH, Weinheim Germany Chapter 2

  16. Anthony JE (2008) The larger acenes: versatile organic semiconductors agnew. Chem Int Ed 47:452–483

    Article  CAS  Google Scholar 

  17. Chun D, Cheng Y, Wudl F (2008) The most stable and fully characterized functional heptacene. Agnew Chem Int Ed 47:8380

    Article  CAS  Google Scholar 

  18. Kaur I, Stein NN, Kopreski RP, Miller GP (2009) Exploiting substituent effects for the synthesis of a photooxidatively resistant heptacene derivative. J Am Chem Soc 131:3424

    Article  CAS  PubMed  Google Scholar 

  19. Patra A, Wijsboom YH, Zade SS, Li M, Sheynin Y, Leitus G, Bendikov M (2008) Poly(3,4-ethylenedioxyselenophene). J Am Chem Soc. 130:6734–6736

    Article  CAS  PubMed  Google Scholar 

  20. Li M, Patra A, Sheynin Y, Bendikov M (2009) Hexyl-Derivatized Poly (3, 4-ethylenedioxyselenophene): novel highly stable organic electrochromic material with high contrast ratio high coloration efficiency. Adv Mater 21:1707–1711

    Article  CAS  Google Scholar 

  21. Li M, Sheynin Y, Patra A, Bendikov M (2009) Tuning the electrochromic properties of poly(alkyl-3,4-ethylenedioxyselenophenes) having high contrast ratio and coloration efficiency. Chem Mater 21:2482–2488

    Article  CAS  Google Scholar 

  22. Wijsboom YH, Patra A, Zade SS, Sheynin Y, Li M, Shimon LJW, Bendikov M (2009) Controlling rigidity and planarity in conjugated polymers: poly(3,4-ethylenedithioselenophene). Angew Chem 121:5551–5555

    Article  Google Scholar 

  23. Gajalakshmi D, Vijay Solomon R, Tamilmani V, Boobalan M, Venuvanalingam P (2015) A DFT/TDDFT mission to probe push pull vinyl coupled thiophene oligomers for optoelectronic applications. RSC Adv 5:50353–50364

    Article  CAS  Google Scholar 

  24. Gajalakshmi D, Boobalan M, Vijay Solomon R, Tamilmani V (2019) Are vinyl coupled Furan derivatives better than thiophene derivatives for optoelectronic applications?-Answers from DFT/TDDFT calculations. J commatsci 162:60–68

    CAS  Google Scholar 

  25. Gajalakshmi D, Tamilmani V (2016) Unraveling the role of π–conjugation in thiophene oligomer for optoelectronic properties by DFT/TDDFT approach. Braz Arch Biol Technol 59(2):1–14

    Google Scholar 

  26. Becke AD (1993) Density functional thermochemistry III the role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  27. Lee W, Yang R, Parr G (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  28. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum A direct utilization of Ab initio molecular potentials for the prevision of solvent effects. J Chem Phys 55:117–129

    Google Scholar 

  29. Zhao Y, Truhlar DG (2008) Density functional with broad applicability in chemistry. Acc Chem Res 41:157–1679

    Article  CAS  PubMed  Google Scholar 

  30. Bader RWF (1990) Atoms in molecules a quantum theory calendon Press, Oxford, R.F.W. Bader. Acc Chem Res. 18 (1985): 9–15

  31. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  32. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998)  NBO version 3.1

  33. Reed AE, Curtiss LA, Weinhold F (1988) Intramolecular interactions from a natural bond orbitals donor-acceptor view point. Chem Rev 8:899–926

    Article  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD,Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko, A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 (Revision A.7) Gaussian, Inc., Pittsburgh

  35. Calvo-Losada S, Quirante Sánchez JJ (2008) pericyclic versus pseudo pericyclic reaction. What the laplacian of charge density delsquare rho(r) has to say about it? The case of cycloaddition reactions. J Phys Chem A 112:8164–8178

    Article  CAS  PubMed  Google Scholar 

  36. Aikens CM, Li S, Schatz GC (2008) From discrete electronic states to plasmons: TDDFT optical absorption properties of Agn (n=10, 20, 35, 56, 84, 120) tetrahedral Clusters. J Phys Chem Int C 112:11272–11279

    Article  CAS  Google Scholar 

  37. Gross EKU, Kohn W (1990) Time-dependent density-functional theory. Adv Quant Chem 21:255–291

    Article  CAS  Google Scholar 

  38. Kulhanek J, Bures F, Wojciechowski A, Makowska-Janusik M, Gondek E, Kityk I (2010) Optical operation by chromophores featuring 4,5-dicyanoimidazole embedded within poly(methyl methacrylate) matrices. J Phys Chem A. 114(35):9440–9446

    Article  CAS  PubMed  Google Scholar 

  39. Makowska-Janusik M, Kityk I, Kulhanek J, Bure F (2011) Peculiarities of the environmental influence of the optical properties of push-pull nonlinear optical molecules: a theoretical study. J Phys Chem A 115(44):12251–12258

    Article  CAS  PubMed  Google Scholar 

  40. Aittala PJ, Cramariuc O, Hukka TI, Vasilescu M, Bandula R, Lemmetyinen H (2010) A TDDFT study of the fluorescence properties of three Alkoxypyridylindolizine derivatives. J Phys Chem A 114:7094–7101

    Article  CAS  PubMed  Google Scholar 

  41. Peach MJG, Le Sueur CR, Ruud K, Guillaume M, Tozer DJ (2009) TDDFT diagnostic testing and functional assessment for triazene chromophores. Phys Chem Chem Phys 11:4465–4470

    Article  CAS  PubMed  Google Scholar 

  42. Petsalakis I, Georgiadou D, Vasilopoulou M, Pistolis G, Dimotikali D, Argitis P, Theodorakopoulos G (2010) Theoretical investigation on the effect of protonation on the absorption and emission spectra of two amine-group-bearing, red push pull emitters, 4-Dimethylamino-4-nitrostilbene and 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino) styryl-4H-pyran, by DFT and TDDFT calculations. J Phys Chem A 114:5580–5587

    Article  CAS  PubMed  Google Scholar 

  43. Fitzner R, Mena-Osteritz E, Mishra A, Schulz G, Reinold E, Weil M, Körner C, Ziehlke H, Elschner C, Leo K, Riede M, Pfeiffer M, Uhrich C, Bäuerle P (2012) correlation of π-conjugated oligomer structure with film morphology and organic solar cell performance. J Am Chem soc 134:11064–11067

    Article  CAS  PubMed  Google Scholar 

  44. Pedone A, Bloino J, Monti S, Prampolini G, Barone V (2009) Absorption and emission UV-Vis spectra of the TRITC fluorophore molecule in solution a quantum mechanical study. Phys Chem Chem Phys 12:1000–1006

    Article  PubMed  Google Scholar 

  45. Barone V, Bloino J, Monti S, Pedone A, Prampolini G (2010) Theoretical multilevel approach for studying the photophysical properties of organic dyes in solution. Phys Chem Chem Phys 12:10550–10561

    Article  CAS  PubMed  Google Scholar 

  46. Geerlings P, De Proft F (2002) Chemical reactivity as described by quantum chemical methods. Int J Moll Sci 3:276–309

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Emeritus Prof. P.Venuvanalingam, Bharathidasan University Tiruchirapalli for computational facility and fruitful discussion rendered during this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gajalakshmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajalakshmi, D., Tamilmani, V. & Jaccob, M. A comprehensive investigation of structural features, electron delocalization, optoelectronic and anti-corrosion characteristics in furan oligomers by DFT/TDDFT method. Theor Chem Acc 140, 81 (2021). https://doi.org/10.1007/s00214-021-02760-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02760-x

Keywords

Navigation