Skip to main content
Log in

The account of atom-pair dispersion interaction on the stabilization of C–H/π bound phenylacetylene–hydrocarbon complexes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this article, atom-pairwise dispersion interaction terms were calculated to describe the origin of dispersion interaction in weakly bound molecular clusters. A series of C–H/π bound phenylacetylene–hydrocarbon complexes were computationally investigated, using the dispersion-corrected DFT methods B3LYP-D3(BJ) and PBE0-D3(BJ) with def2-TZVPP and aug-cc-pVDZ basis sets. The geometry-optimized structures were used to quantitatively analyze the binding energy dependence on several atomic and molecular polarizability parameters. The binding energies of the dispersively bound complexes were excellently correlated linearly with the cumulative dispersion terms (ED3(BJ) and ETD) calculated using Grimme's D3(BJ) and D2 numerical methods, respectively. Only the binary complexes with significant contributions from electrostatic terms are found to deviate from linearity. Depending on the contribution of individual atoms of the ad-molecules, dispersion-layers were proposed. The first layers of hydrogen and carbon atoms have contributed ~ 85% of the total interaction energy. In the most stable structures, the ad-molecules were positioned atop of the center of mass of the PHA molecules suggesting the maximum atom-pair contacts between the interacting partners. The current results provide proof for the atomic polarizability parameters to be accountable for the dispersion energy and do not support ‘sandwiched hydrogen atom’ and ‘C–H···π hydrogen bonding’ models for the face-bound hydrocarbon complexes. The CHn number calculated from structural parameters showed a linear correlation with the binding energy, which suggests the directionless properties of the C–H/π interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Knochenmuss R, Sinha RK, Leutwyler S (2020) Benchmark experimental gas-phase intermolecular dissociation energies by the SEP-R2PI method. Annu Rev Phys Chem 71:189–211. https://doi.org/10.1146/annurev-physchem-050317-014224

    Article  CAS  PubMed  Google Scholar 

  2. Tsuzuki S, Fujii A (2008) Nature and physical origin of CH/π interaction: significant difference from conventional hydrogen bonds. Phys Chem Chem Phys 10:2584–2594. https://doi.org/10.1039/B718656H

    Article  CAS  PubMed  Google Scholar 

  3. Wagner JP, Schreiner PR (2015) London Dispersion in Molecular Chemistry—Reconsidering Steric Effects. Angew Chemie Int Ed 54:12274–12296. https://doi.org/10.1002/anie.201503476

    Article  CAS  Google Scholar 

  4. Morita S, Fujii A, Mikami N, Tsuzuki S (2006) Origin of the attraction in aliphatic C-H/pi interactions: infrared spectroscopic and theoretical characterization of gas-phase clusters of aromatics with methane. J Phys Chem A 110:10583–10590. https://doi.org/10.1021/jp064297k

    Article  CAS  PubMed  Google Scholar 

  5. Maity S, Knochenmuss R, Holzer C et al (2016) Accurate dissociation energies of two isomers of the 1-naphtholcyclopropane complex. J Chem Phys 145:164304. https://doi.org/10.1063/1.4965821

    Article  CAS  PubMed  Google Scholar 

  6. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264. https://doi.org/10.1021/cr990050q

    Article  CAS  PubMed  Google Scholar 

  7. Frey JA, Holzer C, Klopper W, Leutwyler S (2016) Experimental and theoretical determination of dissociation energies of dispersion-dominated aromatic molecular complexes. Chem Rev 116:5614–5641. https://doi.org/10.1021/acs.chemrev.5b00652

    Article  CAS  PubMed  Google Scholar 

  8. Ran J, Wong MW (2006) Saturated hydrocarbon−benzene complexes: theoretical study of cooperative CH/π interactions. J Phys Chem A 110:9702–9709. https://doi.org/10.1021/jp0555403

    Article  CAS  PubMed  Google Scholar 

  9. Nishio M (2011) The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys Chem Chem Phys 13:13873–13900. https://doi.org/10.1039/C1CP20404A

    Article  CAS  PubMed  Google Scholar 

  10. Fujii A, Hayashi H, Park JW et al (2011) Experimental and theoretical determination of the accurate CH/π interaction energies in benzene–alkane clusters: correlation between interaction energy and polarizability. Phys Chem Chem Phys 13:14131–14141. https://doi.org/10.1039/C1CP20203K

    Article  CAS  PubMed  Google Scholar 

  11. Brandl M, Weiss MS, Jabs A et al (2001) C-hπ-interactions in proteins. J Mol Biol 307:357–377. https://doi.org/10.1006/jmbi.2000.4473

    Article  CAS  PubMed  Google Scholar 

  12. Nishio M, Umezawa Y, Fantini J et al (2014) CH-π hydrogen bonds in biological macromolecules. Phys Chem Chem Phys 16:12648–12683

    Article  CAS  Google Scholar 

  13. Knochenmuss R, Maity S, Balmer F et al (2018) Intermolecular dissociation energies of 1-naphthol·n-alkane complexes. J Chem Phys 149:34306. https://doi.org/10.1063/1.5034110

    Article  CAS  Google Scholar 

  14. Knochenmuss R, Sinha RK, Leutwyler S (2018) Intermolecular dissociation energies of dispersively bound complexes of aromatics with noble gases and nitrogen. J Chem Phys 148:134302. https://doi.org/10.1063/1.5019432

    Article  CAS  PubMed  Google Scholar 

  15. Maity S, Ottiger P, Balmer FA et al (2016) Intermolecular dissociation energies of dispersively bound 1-naphtholcycloalkane complexes. J Chem Phys 145:244314. https://doi.org/10.1063/1.4973013

    Article  CAS  PubMed  Google Scholar 

  16. Maity S, Patwari GN, Karthikeyan S, Kim KS (2010) Binary complexes of tertiary amines with phenylacetylene. Dispersion wins over electrostatics. Phys Chem Chem Phys 12:6150–6156. https://doi.org/10.1039/B918013C

    Article  CAS  PubMed  Google Scholar 

  17. Nishio M, Umezawa Y, Honda K et al (2009) CH/π hydrogen bonds in organic and organometallic chemistry. CrystEngComm 11:1757. https://doi.org/10.1039/b902318f

    Article  CAS  Google Scholar 

  18. Maity S, Guin M, Singh PC, Patwari GN (2010) Phenylacetylene: a hydrogen bonding chameleon. ChemPhysChem 12:26–46. https://doi.org/10.1002/cphc.201000630

    Article  CAS  PubMed  Google Scholar 

  19. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  20. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  21. Knochenmuss R, Sinha RK, Balmer FA et al (2020) Intermolecular dissociation energies of 1-naphthol complexes with large dispersion-energy donors: decalins and adamantane. J Chem Phys 152:104304. https://doi.org/10.1063/1.5144773

    Article  CAS  PubMed  Google Scholar 

  22. Haldar S, Gnanasekaran R, Hobza P (2015) A comparison of ab initio quantum-mechanical and experimental D0 binding energies of eleven H-bonded and eleven dispersion-bound complexes. Phys Chem Chem Phys 17:26645–26652. https://doi.org/10.1039/C5CP04427H

    Article  CAS  PubMed  Google Scholar 

  23. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835. https://doi.org/10.1063/1.467146

    Article  Google Scholar 

  24. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  25. London F (1930) Properties and applications of molecular forces. Z Phys Chem 11(Abt:B), 222–251

    CAS  Google Scholar 

  26. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  27. Ulrich NW, Seifert NA, Dorris RE et al (2014) Benzene⋯acetylene: a structural investigation of the prototypical CH⋯π interaction. Phys Chem Chem Phys 16:8886–8894. https://doi.org/10.1039/C4CP00845F

    Article  CAS  PubMed  Google Scholar 

  28. NIST Computational Chemistry Comparison and Benchmark Database (2019) NIST Standard Reference Database Number 101 Release 20, August 2019, Editor: Russell D. Johnson III http://cccbdb.nist.gov/

  29. Shibasaki K, Fujii A, Mikami N, Tsuzuki S (2007) Magnitude and nature of interactions in benzene−X (X = Ethylene and Acetylene) in the gas phase: significantly different CH/π interaction of acetylene as compared with those of ethylene and methane. J Phys Chem A 111:753–758. https://doi.org/10.1021/jp065076h

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Department of Chemistry, IIT Hyderabad and MHRD, the Government of India. SK thanks the Ministry of Education, Government of India, for the research fellowship

Funding

There is no funding to report for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Maity.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2860 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodia, S., Halder, S., Sarkar, S. et al. The account of atom-pair dispersion interaction on the stabilization of C–H/π bound phenylacetylene–hydrocarbon complexes. Theor Chem Acc 140, 46 (2021). https://doi.org/10.1007/s00214-021-02757-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02757-6

Keywords

Navigation