Skip to main content
Log in

G0W0 based on time-dependent auxiliary density perturbation theory

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

G0W0 equations are represented on the space generated by auxiliary functions used for the variational fitting of Coulomb potentials in density functional theory. It is shown that the Coulomb coupling matrix found in auxiliary density perturbation theory is just the discrete representation of the polarization function on the basis of auxiliary functions. In a similar way very compact expressions are found for the dielectric matrix and the screened potential. Additionally, a linearized form of analytic continuation is proposed by importing information from electron propagator methods about the location of Green’s function poles. Implementation into the software packages Nagual and deMon2k was performed. Numerical results are presented for a small set of molecules and for the GW100 set, including the use of Hartree–Fock and Kohn–Sham reference states with double and triple zeta basis sets. Accuracy of results demonstrates the reliability of the approach implemented in this work which is the most natural in the context of auxiliary density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hedin L (1965) Phys Rev 139:A796

    Google Scholar 

  2. Casida ME, Chong DP (1991) Phys Rev A 44:5773

    CAS  PubMed  Google Scholar 

  3. Hu CH, Chong DP, Casida ME (1997) Journal of Electron Spectr. 85(1):39

    CAS  Google Scholar 

  4. Godby RW, Schlüter M, Sham LJ (1998) Phys Rev B 37:10159

    Google Scholar 

  5. Caruso F, Atalla V, Ren X, Rubio A, Scheffler M, Rinke P (2014) Phys Rev B 90:085141

    Google Scholar 

  6. Stan A, Dahlen NE, van Leeuwen R (2006) Europhys Lett 76:298

    CAS  Google Scholar 

  7. Aryasetiawan F, Gunnarson O (1998) Rep Prog Phys 61:237

    CAS  Google Scholar 

  8. Yan J, Mortensen JJ, Jacobsen KW, Thygesen KS (2011) Phys Rev B 83:245122

    Google Scholar 

  9. Aguilera I, Vidal J, Wahnón P, Reining L, Botti S (2011) Phys Rev B 84:085145

    Google Scholar 

  10. Rinke P, Qteish A, Neugebauer J, Freysoldt C, Scheffler M (2005) New J Phys 7:126

    Google Scholar 

  11. Onida G, Reining L, Godby RW, Del Sole R, Andreoni W (1995) Phys Rev Lett 75:818

    CAS  PubMed  Google Scholar 

  12. Hahn PH, Schmidt WG, Bechstedt F (2005) Phys Rev B 72:245425

    Google Scholar 

  13. Darghouth AAMHM, Casida ME, Taouli W, Alimi K, Ljungberg MP, Koval P, ánchez-Portal DS, Foerster D (2015) Computation 3:616

    CAS  Google Scholar 

  14. Li LH, Kontsevoi OY, Freeman AJ (2014) Phys Rev B 90:195203

    Google Scholar 

  15. Samsonidze G, Cohen ML, Louie SG (2014) Comput Mater Sci 91:187

    CAS  Google Scholar 

  16. Rostgaard C, Jacobsen KW, Thygesen KS (2010) Phys Rev B 81:085103

    Google Scholar 

  17. Marom N, Caruso F, Ren X, Hofmann OT, Körzdörfer T, Chelikowsky JR, Rubio A, Scheffler M, Rinke P (2012) Phys Rev B 86:245127

    Google Scholar 

  18. Atalla V, Yoon M, Caruso F, Rinke P, Scheffler M (2013) Phys Rev B 88:165122

    Google Scholar 

  19. Ren X, Marom N, Caruso F, Scheffler M, Rinke P (2015) Phys Rev B 92:081104

    Google Scholar 

  20. Hellgren M, Caruso F, Rohr DR, Ren X, Rubio A, Scheffler M, Rinke P (2015) Phys Rev B 91:165110

    Google Scholar 

  21. van Setten MV, Caruso F, Sharifzadeh S, Ren X, Scheffler M, Fang L, Lischner J, Lin L, Deslippe JR, Louie SG, Yang C, Weigend F, Neaton JB, Evers F, Rinke P (2015) J Chem Theory Comput 11:5665

    PubMed  Google Scholar 

  22. Boulanger P, Jacquemin D, Duchemin I, Blase X (2014) J Chem Theory Comput 10:1212

    CAS  PubMed  Google Scholar 

  23. Bruneval F, Marques MA (2012) J Chem Theory Comput 9(1):324

    PubMed  Google Scholar 

  24. van Setten MJ, Caruso F, Sharifzadeh S, Ren X, Scheffler M, Liu F, Lischner J, Lin L, Deslippe JR, Louie SG, Yang C, Weigend F, Neaton JB, Evers F, Rinke P (2015) J Chem Theory Comput 11(12):5665. https://doi.org/10.1021/acs.jctc.5b00453

    Article  CAS  PubMed  Google Scholar 

  25. Hüser F, Olsen T, Thygesen KS (2013) Phys Rev B 87:235132

    Google Scholar 

  26. Strinati G, Mattausch HJ, Hanke W (1982) Phys Rev B 25:2687

    Google Scholar 

  27. Fuchs F, Furthmüller J, Bechstedt F (2007) Phys Rev B 76:115109

    Google Scholar 

  28. Marom N, Moussa E, Ren X, Tkatchenko A, Chelikowsky JR (2011) Phys Rev B 84:245115

    Google Scholar 

  29. Shishkin M, Kresse G (2007) Phys Rev B 75:235102

    Google Scholar 

  30. Faleev SV, van Schilfgaarde M, Kotani T (2004) Phys Rev Lett 93:126406

    PubMed  Google Scholar 

  31. Caruso F, Rinke P, Ren X, Scheffler M, Rubio A (2012) Phys Rev B 86:081102

    Google Scholar 

  32. Ren X, Rinke P, Scuseria GE, Scheffler M (2013) Phys Rev B 88(3):035120

    Google Scholar 

  33. Casida ME, Chong DP (1989) Phys Rev A 40:4837

    CAS  Google Scholar 

  34. Casida ME, Chong DP (1991) Phys Rev A 44:6151

    CAS  PubMed  Google Scholar 

  35. Hybertsen MS, Louie SG (1986) Phys Rev B 34(8):5390

    CAS  Google Scholar 

  36. Caruso F, Dauth M, van Setten MJ, Rinke P (2016) J Chem Theory Comput 12(10):5076. https://doi.org/10.1021/acs.jctc.6b00774

    Article  CAS  PubMed  Google Scholar 

  37. Köster AM, Geudtner G, Alvarez-Ibarra A, Calaminici P, Casida ME, Carmona-Espíndola J, Delesma FA, Delgado-Venegas R, Domínguez VD, Flores-Moreno R, Gamboa GU, Goursot A, Heine T, Ipatov A, de la Lande A, Janetzko F, del Campo JM, Pedroza-Montero N, Petterson LGM, Mejía-Rodríguez D, Reveles J, Vásquez-Pérez J, Vela A, B.A.Z. niga Gutiérrez, Salahub DR (2020) deMon2k (The deMon developers, Cinvestav, Mexico City, 2020). See also: http://www.demon-software.com

  38. Flores-Moreno R, Guerrero-Cruz JA, Gonzalez-Ramirez H, Villalobos-Castro JJ, Flores-Ramos JA, Zuniga-Gutierrez BA, Lew-Yee JFH, del Campo JM (2020) Nagual 1. University of Guadalajara, Guadalajara

    Google Scholar 

  39. Flores-Moreno R, Ortiz JV (2009) J Chem Phys 131:124110

    PubMed  Google Scholar 

  40. Vysotskiy VP, Cederbaum LS (2010) J Chem Phys 132(4):044110

    PubMed  Google Scholar 

  41. Villalobos-Castro JDJ, Guerrero-Cruz JA, Zuniga-Gutierrez B, Flores-Moreno R (2018) Comput Theor Chem 1136–1137:29

    Google Scholar 

  42. Lew-Yee JFH, Flores-Moreno R, Morales JL, del Campo JM (2020) J Chem Theory Comput 16(3):1597

    CAS  PubMed  Google Scholar 

  43. Flores-Moreno R, Köster AM (2008) J Chem Phys 128:134105

    PubMed  Google Scholar 

  44. Carmona-Espíndola J, Flores-Moreno R, Köster AM (2010) J Chem Phys 133:084102

    PubMed  Google Scholar 

  45. Hartree DR (1935) Proc R Soc (Lond) A151:96

    Google Scholar 

  46. Fock V, Petrashen M (1934) Phys Z Sowjetunion 6:368

    Google Scholar 

  47. Kohn W, Sham LJ (1965) Phys Rev 140(4A):A1133

    Google Scholar 

  48. Ortiz JV (2020) J Chem Phys 153(7):070902. https://doi.org/10.1063/5.0016472

    Article  CAS  PubMed  Google Scholar 

  49. Linderberg J, Öhrn Y (2004) Propagators in quantum chemistry, 2nd edn. Wiley, Hoboken

    Google Scholar 

  50. Ortiz JV (1996) J Chem Phys 104:7599

    CAS  Google Scholar 

  51. Ortiz JV (1998) J Chem Phys 109:5741

    CAS  Google Scholar 

  52. Díaz-Tinoco M, Dolgounitcheva O, Zakrzewski VG, Ortiz JV (2016) J Chem Phys 144(22):224110

    PubMed  Google Scholar 

  53. Hirata S, Hermes MR, Simons J, Ortiz JV (2015) J Chem Theory Comput 11(4):1595

    CAS  PubMed  Google Scholar 

  54. Hirata S, Doran AE, Knowles PJ, Ortiz JV (2017) J Chem Phys 147:044108

    PubMed  Google Scholar 

  55. Tamayo-Mendoza T, Flores-Moreno R (2014) J Chem Theory Comput 10(6):2363

    CAS  PubMed  Google Scholar 

  56. Friedrich C, Schindlamyr A (2006) NIC Seri 31:335

    Google Scholar 

  57. Abrikosov AA, Gorkov LP, Dzialoshinski I (1975) Methods of quantum field theory in statistical physics. Dover Publications, New York

    Google Scholar 

  58. Fetter AL, Walecka JD (2003) Quantum theory of many-particle systems, 1st edn. Dover Publication, New York

    Google Scholar 

  59. Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw-Hill, New York

    Google Scholar 

  60. Flores-Moreno R, Zakrzewski VG, Ortiz JV (2007) J Chem Phys 127(13):134106

    PubMed  Google Scholar 

  61. Blase X, Attaccalite C, Olevano V (2011) Phys Rev B 83:115103

    Google Scholar 

  62. Ren X, Rinke P, Blum V, Wieferink J, Tkatchenko A, Sanfilippo A, Reuter K, Scheffler M (2012) New J Phys 14(5):053020

    Google Scholar 

  63. McWeeny R (1962) Phys Rev 126:1028

    Google Scholar 

  64. McWeeny R (2001) Methods of molecular quantum mechanics. Academic Press, London

    Google Scholar 

  65. Köster AM, Reveles JU, del Campo JM (2004) J Chem Phys 121:3417

    PubMed  Google Scholar 

  66. Dunlap BI, Connolly JWD, Sabin JR (1979) J Chem Phys 71:4993

    CAS  Google Scholar 

  67. Mejía-Rodríguez D, Köster AM (2014) J Chem Phys 141(12):124114

    PubMed  Google Scholar 

  68. Lebègue S, Arnaud B, Alouani M, Bloechl PE (2003) Phys Rev B 67:155208. https://doi.org/10.1103/PhysRevB.67.155208

    Article  CAS  Google Scholar 

  69. Pérez-Jordá JM, Becke AD, San-Fabián E (1994) J Chem Phys 100(9):6520

    Google Scholar 

  70. Treutler O, Ahlrichs R (1995) J Chem Phys 102(1):346

    CAS  Google Scholar 

  71. Dunning TH Jr (1989) J Chem Phys 90(2):1007

    CAS  Google Scholar 

  72. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem 70(2):560. https://doi.org/10.1139/v92-079

    Article  CAS  Google Scholar 

  73. Barbieri PL, Fantin PA, Jorge FE (2006) Mol Phys 104:2945

    CAS  Google Scholar 

  74. Pritchard BP, Altarawy D, Didier B, Gibsom TD, Windus TL (2019) J Chem Inf Model 59:4814

    CAS  PubMed  Google Scholar 

  75. Feller D (1996) J Comput Chem 17:1571

    CAS  Google Scholar 

  76. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045

    CAS  PubMed  Google Scholar 

  77. Köster AM (2003) J Chem Phys 118(22):9943

    Google Scholar 

  78. Andzelm J, Radzio E, Salahub DR (1985) J Comput Chem 6(6):520

    CAS  Google Scholar 

  79. Andzelm J, Russo N, Salahub DR (1987) J Chem Phys 87(11):6562

    CAS  Google Scholar 

  80. Calaminici P, Janetzko F, Köster AM, Mejia-Olvera R, Zuniga-Gutierrez B (2007) J Chem Phys 126(4):044108

    PubMed  Google Scholar 

  81. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    CAS  Google Scholar 

  82. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    CAS  PubMed  Google Scholar 

  83. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    CAS  Google Scholar 

  84. Shigeta Y, Ferreira AM, Zakrzewsky VG, Ortiz JV (2001) Int J Quantum Chem 85:411

    CAS  Google Scholar 

  85. Krause K, Harding ME, Klopper W (2015) Mol Phys 113(13–14):1952. https://doi.org/10.1080/00268976.2015.1025113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge CPU time provided by Centro de Análisis de Datos y Supercómputo (CADS) from the University of Guadalajara. JVC gratefully thanks Mexico’s national council for science and technology (CONACyT) for a PhD scholarship, Grant Number 256248, and a postdoctoral grant in 2020. BZG acknowledges funding from CONACyT Project CB-2015-258647.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Flores-Moreno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “20th deMon Developers Workshop”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villalobos-Castro, J., Zúñiga-Gutiérrez, B.A. & Flores-Moreno, R. G0W0 based on time-dependent auxiliary density perturbation theory. Theor Chem Acc 140, 82 (2021). https://doi.org/10.1007/s00214-021-02755-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02755-8

Keywords

Navigation