Skip to main content
Log in

A theoretical study of radical scavenging antioxidant activity of 3-styrylchromone derivatives using DFT based on quantum chemical descriptors

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Chromone (4H-chromen-4-one, 4H-1-benzopyran-4-one) heterocyclic compound has been widely used in traditional medicine, which has anti-allergy, anti-inflammation, anti-diabetes, anti-tumor, antibacterial and other pharmacological effects. To estimate the scavenging activity on free radical of 3-styrylchromone derivatives, we considered the physical and chemical properties of the molecule structure, orbital, and thermodynamics. The antioxidant activity of 3-styrylchromone derivatives was studied by density functional theory (DFT) in gas and water. A series of quantum chemical parameters were calculated to describe molecular properties and clarify the radical scavenging mechanism. Our study suggests that the antioxidant activity of scavenging free radicals is largely affected by molecular structure, especially the number of hydroxyl groups, hydrogen bonds, and conjugation effects. 3-styrylchromone derivatives containing pyrogallol structure may have potential antioxidant activity. The antioxidant ability of catechol structure is greater than pyrogallol structure. 1,4-pyrrole also has a positive effect on free radical scavenging, but the scavenging effect of 2-OH and 5-OH introduced by antioxidants was not obvious. The excellent correlations between the structure and the mentioned DFT-based descriptors lead us to predict good antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this article.

Code availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. M Dizdaroglu, P Jaruga, M Birincioglu, H Rodriguez (2002) Free radical-induced damage to dna: mechanisms and measurement 1,2 1this article is part of a series of reviews on “oxidative dna damage and repair.” the full list of papers may be found on the homepage of the journal. 2guest editor: miral dizdaroglu. Free Radical Biology and Medicine 32(11): 1102–1115

  2. Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, Hakulinen T, Aromaa A (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76(3):560–568

    Article  CAS  PubMed  Google Scholar 

  3. Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F (2014) Chromone: a valid scaffold in medicinal chemistry. Chem Rev 114:4960–4992

    Article  CAS  PubMed  Google Scholar 

  4. Abu-Hashem AA, Youssef MM (2011) Synthesis of new visnagen and khellin furochromone pyrimidine derivatives and their antiinflammatory and analgesic activity. Molecules 16:1956–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Keri RS, Budagumpi S, Pai RK, Balakrishna RG (2014) Chromones as a privileged scaffold in drug discovery: a review. Eur J Med Chem 78:340–374

    Article  CAS  PubMed  Google Scholar 

  6. Filipe P, Silva AMS, Morliere P, Brito CM, Patterson LK, Hug GL, Silva JN, Cavaleiro JAS, Maziere JC, Freitas JP, Santus R (2004) Polyhydroxylated 2-styrylchromones as potent antioxidants. Biochem Pharmacol 67(12):2207–2218

    Article  CAS  PubMed  Google Scholar 

  7. Momoi K, Sugita Y, Ishihara M, Satoh K, Kikuchi H, Hashimoto K, Yokoe I, Nishikawa H, Fujisawa S, Sakagami H (2005) Cytotoxic activity of styrylchromones against human tumor cell lines. Vivo 19(1):157

    CAS  Google Scholar 

  8. Conti C, Desideri N (2010) New 4h-chromen-4-one and 2h-chromene derivatives as anti-picornavirus capsid-binders. Bioorg Med Chem 18:6480–6488

    Article  CAS  PubMed  Google Scholar 

  9. Koichi T, Ryo I, Yoshiaki S (2014) Synthesis and biological evaluation of 3-styrylchromone derivatives as free radical scavengers and α-glucosidase inhibitors. Chem. Pharma. Bull. 62(8):815–816

    Google Scholar 

  10. Conti C, Desideri N (2010) New 4H-chromen-4-one and 2Hchromene derivatives as anti-picornavirus capsid-binders. Bioorg Med Chem 18:6480–6488

    Article  CAS  PubMed  Google Scholar 

  11. Shimada C, Uesawa Y, Ishii-Nozawa R, Ishihara M, Kagaya H, Kanamoto T, Sakagami H (2014) Quantitative structure–cytotoxicity relationship of 3-styrylchromones. Anticancer Res 34:5405–5411

    CAS  PubMed  Google Scholar 

  12. Sonawane SA, Chavan VP, Shingare MS, Karale BK (2002) Synthesis of 3-methyl-4-[(1, 3-diphenyl-1H-pyrazol-4-yl) methylene]-1-ph enyl-pyrazolin-5 (4H)-ones and some 3-styrylchromones. Ind J Heterocycl Chem 12:65–66

    CAS  Google Scholar 

  13. Takao K, Ishikawa R, Sugita Y (2014) Synthesis and biological evaluation of 3-styrylchromone derivatives as free radical scavengers and α-glucosidase inhibitors. Chem Pharm Bull 62:810–815

    Article  CAS  Google Scholar 

  14. Akmak E, In DZ (2020) A theoretical evaluation on free radical scavenging activity of 3-styrylchromone derivatives: the dft study. J Mol Model 26(5):1–11

    Google Scholar 

  15. Guo Q, Zhao BL, Shen SR, Hou JW, Hu JG, Xin WJ (1999) Biochim Biophys Acta 1427:13–23

    Article  CAS  PubMed  Google Scholar 

  16. Taubert D, Breitenbach T, Lazar A, Censarek P, Harlfinger S, Berkels R, Foti M, Piattelli M, Baratta MT, Ruberto G (1996) J Agric Food Chem 44:497–501

    Article  Google Scholar 

  17. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH (2012) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19(6–7):669–675

    Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C 01. Gaussian Inc, Wallingford

    Google Scholar 

  19. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Res. B 37(2):785–789

    Article  CAS  Google Scholar 

  20. Becke AD (1993) Density-functional thermochemistry III The role of exact exchange. J Chem Phys 98(7):5648

    Article  CAS  Google Scholar 

  21. Zhao Y, Truhlar DG (2008) How well can new-generation density functionals describe the energetics of bond-dissociation reactions producing radicals? J Phys Chem A 112(6):1095–1099

    Article  CAS  PubMed  Google Scholar 

  22. Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  23. Szeląg M, Mikulski D, Molski M (2012) Quantum-chemical investigation of the structure and the antioxidant properties of α-lipoic acid and its metabolites. J Mol Model 18:2907–2916

    Article  PubMed  Google Scholar 

  24. Wright JS, Johnson ER, Dilabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123(6):1173–1183

    Article  CAS  PubMed  Google Scholar 

  25. Stepanic V, Troselj KG, Lucic B, Markovic Z, Amic D (2013) Bond dissociation free energy as a general parameter for flavonoid radical scavenging activity. Food Chem 141(2):1562–1570

    Article  CAS  PubMed  Google Scholar 

  26. Xue Y, ZhengY AL, Dou Y, Liu Y (2014) Density functional theory study of the structure-antioxidant activity of polyphenolic deoxybenzoins. Food Chem 151:198–206

    Article  CAS  PubMed  Google Scholar 

  27. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183

    Article  CAS  PubMed  Google Scholar 

  28. Klein E, Rimarcik J, LukesV, (2009) DFT/B3LYP study of the O-H bond dissociation enthalpies and proton affinities of para-and metasubstituted phenols in water and benzene. Acta Chim Slov 2:37–51

    Google Scholar 

  29. Parker VD (1992) Homolytic bond (HA) dissociation free energies in solution. Applications of the standard potential of the (H+/H. bul.) couple. J Am Chem Soc 114:7458–7462

    Article  CAS  Google Scholar 

  30. Bizarro MM, Cabral BC, Dos Santos RB, Simões JM (1999) Substituent effects on the O-H bond dissociation enthalpies in phenolic compounds: agreements and controversies+ erratum. Pure Appl Chem 71:1249–1256

    Article  CAS  Google Scholar 

  31. Janak JF (1978) Proof that∂ e∂ n i= ε in density-functional theory. Phys Rev B 18:7165

    Article  CAS  Google Scholar 

  32. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  33. Pearson RG (1997) Chemical hardness: applications from molecules to solids. Wiley-VCH, Weinheim

    Book  Google Scholar 

  34. Pearson RG (1973) Hard and soft acids and bases. Dowden Hutchinson and Ross, Stroudsberg

    Google Scholar 

  35. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  36. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27:734–740

    Article  CAS  Google Scholar 

  37. Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  38. Sıdır I, Sıdır YG, Kumalar M, Taşal E (2010) Ab initio Hartree-Fock and density functional theory investigations on the conformational stability, molecular structure and vibrational spectra of 7-acetoxy-6-(2,3-dibromopropyl)-4,8-dimethylcoumarin molecule. J Mol Struct 964:134–151

    Article  Google Scholar 

  39. Barakat A, Al-Majid AM, Soliman SM, Mabkhot YN, Ali M, Ghabbour HA, Fun HK, Wadood A (2015) Synthesis and antibacterial and antifungal activities of n-(tetra-o-acetyl-β-d-glucopyranosyl)thiosemicarbazones of substituted 4-formylsydnones. Chem Cent J 9:1–15

    CAS  Google Scholar 

  40. Mukai K, Oka W, Watanabe K, Egawa Y, Nagaoka S-i, Terao J (1997) Kinetic study of free-radical-scavenging action of flavonoids in homogeneous and aqueous triton x–100 micellar solutions. J Phys Chem A 101:3746–3753

    Article  CAS  Google Scholar 

  41. Liu Q, Trotter J, Zhang J, Peters MM, Cheng H, Bao J, Han X, Weeber EJ, Bu G (2010) Neuronal lrp1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, age-dependent synapse loss and neurodegeneration. J Neuroence 30(50):17068–17078

    CAS  Google Scholar 

  42. Wang G, Xue Y, An L, Zheng Y, Dou Y, Zhang L, Liu Y (2015) Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones. Food Chem 171:89–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the team of syngas catalytic conversion of Shaanxi University of Technology, the project of education department of Shaanxi province (20JK0565), Natural Science Basic Research Program of Shaanxi (Program No.2021JQ-751), the Shaanxi Province Education Ministry Research Foundation (19JS010), the Project of Shaanxi University of Technology (SLGKY2009).

Funding

This work is supported by the team of syngas catalytic conversion of Shaanxi University of Technology, the project of education department of Shaanxi province (20JK0565), Natural Science Basic Research Program of Shaanxi (Program No.2021JQ-751), the Shaanxi Province Education Ministry Research Foundation (19JS010), the project of Shaanxi University of Technology (SLGKY2009).

Author information

Authors and Affiliations

Authors

Contributions

Pei Huang contributed to the conception of the study and performed the experiment; Lingxia Jin contributed significantly to analysis and manuscript preparation; Jiufu Lu performed the data analyses and wrote the manuscript; Yanhong Gao and Shaobo Guo helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Pei Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2077 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Jin, LX., Lu, JF. et al. A theoretical study of radical scavenging antioxidant activity of 3-styrylchromone derivatives using DFT based on quantum chemical descriptors. Theor Chem Acc 140, 48 (2021). https://doi.org/10.1007/s00214-021-02754-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02754-9

Keywords

Navigation