Skip to main content
Log in

Self-interaction-correction and electron removal energies

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The paper addresses the problem of the self-interaction correction (SIC) in static calculations of atoms and molecules. Key observable is the electron removal energy, the energy required to remove one electron from the given system and to leave it in a definite hole state whereby we discuss hole states not only in the Highest Occupied Molecular Orbital (HOMO), but also deeper lying holes. To that end, we employ a newly developed technique to compute a stationary state for a configuration with a definite hole in a chosen single-particle state. We also compare two different definitions of removal energies, first, the genuine one taking the difference of the total energy of the original system and the energy of final system sustaining the hole, and second, simply the single-particle energy in the original system. According to Koopman’s theorem, both should be close to each other. Four different systems are considered, one atom and three molecules with different bond types, covalent, metallic, and dipolar. The general result is that any SIC brings considerable improvement as compared to the initial Local-Density Approximation (LDA), the better the closer the hole stays to the HOMO. There are variations between different SIC approximations whereby systems with strong binding (atom and covalent molecule) show least variations. Here, the quality of Koopman’s theorem is very satisfying for the HOMO and degrades slightly toward deeper binding. Systems with metallic or dipolar binding are more reactive and show stronger changes with approximation and hole level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weissbluth M (1978) Atoms and molecules. Academic Press, San Diego

    Google Scholar 

  2. Ghosh P (1983) Introduction to photoelectron spectroscopy. Wiley, New York

    Google Scholar 

  3. Pabst S, Greenman L, Ho P, Mazziotti D, Santra R (2011) Phys Rev Lett 106:053003

    Article  PubMed  Google Scholar 

  4. Arnold C, Larivière-Loiselle C, Khalili K, Inhester L, Welsch R, Santra R (2020) J Phys B 53:164006

    Article  CAS  Google Scholar 

  5. Baruah T, Pederson MR (2006) J Chem Phys 125:164706

    Article  PubMed  Google Scholar 

  6. Martin RM, Reining L, Ceperley DM (2016) Interacting electrons: theory and computational approaches. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  8. Dreizler RM, Gross EKU (1990) Density functional theory: an approach to the quantum many-body problem. Springer-Verlag, Berlin

    Book  Google Scholar 

  9. Kohn W (1999) Rev Mod Phys 71:1253

    Article  CAS  Google Scholar 

  10. Gross EKU, Kohn W (1990) Adv Quant Chem 21:255

    Article  CAS  Google Scholar 

  11. Gross EKU, Dobson JF, Petersilka M (1996) Top Curr Chem 181:81

    Article  CAS  Google Scholar 

  12. Kohanoff J (2006) Electronic structure calculations for solids and molecules: theory and computational methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  13. Reinhard PG, Suraud E (2004) Introduction to cluster dynamics. Wiley, New York

    Google Scholar 

  14. Marques MAL, Ullrich CA, Nogueira F (eds) (2006) Time-dependent density functional theory, lecture notes in physics, vol 706. Springer, Berlin

    Google Scholar 

  15. Fennel T, Meiwes-Broer KH, Tiggesbäumker J, Dinh PM, Reinhard PG, Suraud E (2010) Rev Mod Phys 82:1793

    Article  Google Scholar 

  16. Ullrich C (2012) Time-dependent density-functional theory: concepts and applications. Oxford University Press, Oxford

    Google Scholar 

  17. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  18. Kohn W, Sham LJ (1965) Phys Rev 140:1133

    Article  Google Scholar 

  19. Schwarz K (1978) Chem Phys Lett 57(4):605

    Article  CAS  Google Scholar 

  20. Kümmel S, Kronik L, Perdew JP (2004) Phys Rev Lett 93:213002

    Article  PubMed  Google Scholar 

  21. Nieminen RM (1999) Curr Opin Solid State Mater Sci 4:493

    Article  CAS  Google Scholar 

  22. Giovannini UD, Varsano D, Marques MAL, Appel H, Gross EKU, Rubio A (2012) Phys Rev A 85:062515

    Article  Google Scholar 

  23. Casida ME, Salahub DR (2000) J Chem Phys 113:8918

    Article  CAS  Google Scholar 

  24. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  26. Perdew JP (1979) Chem Phys Lett 64:127

    Article  CAS  Google Scholar 

  27. Pederson MR, Heaton RA, Lin CC (1984) J Chem Phys 80(5):1972

    Article  CAS  Google Scholar 

  28. Goedecker CUS (1997) Phys Rev A 55:1765

    Article  CAS  Google Scholar 

  29. Vydrov OA, Scuseria GE (2004) J Chem Phys 121:8187

    Article  CAS  PubMed  Google Scholar 

  30. Hofmann D, Klüpfel S, Klüpfel P, Kümmel S (2012) Phys Rev A 85:062514

    Article  Google Scholar 

  31. Klüpfel S, Klüpfel P, Jónsson H (2012) J Chem Phys 137:124102

    Article  PubMed  Google Scholar 

  32. Svane A (1996) Phys Rev B 53:4275

    Article  CAS  Google Scholar 

  33. Klüpfel S, Klüpfel P, Jónsson H (2011) Phys Rev A 84:050501

    Article  Google Scholar 

  34. Messud J, Dinh PM, Reinhard PG, Suraud E (2008) Phys Rev Lett 101:096404

    Article  CAS  PubMed  Google Scholar 

  35. Sharp RT, Horton GK (1953) Phys Rev 30:317

    Article  Google Scholar 

  36. Kümmel S, Kronik L (2008) Rev Mod Phys 80:3

    Article  Google Scholar 

  37. Chen J, Krieger JB, Li Y, Iafrate GJ (1996) Phys Rev A 54:3939

    Article  CAS  PubMed  Google Scholar 

  38. Krieger JB, Li Y, Iafrate GJ (1992) Phys Rev A 45:101

    Article  CAS  PubMed  Google Scholar 

  39. Fermi E, Amaldi E (1934) Accad Ital Rome 6:117

    Google Scholar 

  40. Legrand C, Suraud E, Reinhard PG (2002) J Phys B 35:1115

    Article  CAS  Google Scholar 

  41. Ciofini I, Adamo C, Chermette H (2005) Chem Phys 309:67

    Article  CAS  Google Scholar 

  42. Klüpfel P, Dinh PM, Reinhard PG, Suraud E (2013) Phys Rev A 88:052501

    Article  Google Scholar 

  43. Koopmans T (1933) Physica 1:104

    Article  CAS  Google Scholar 

  44. Perdew JP, Levy M (1997) Phys Rev B 56:16021

    Article  CAS  Google Scholar 

  45. Pohl A, Reinhard PG, Suraud E (2000) Phys Rev Lett 84:5090

    Article  CAS  PubMed  Google Scholar 

  46. Pohl A, Reinhard PG, Suraud E (2003) Phys Rev A 68:053202

    Article  Google Scholar 

  47. Marc Vincendon, Dinh Phuong Mai, Romaniello Pina, Reinhard Paul-Gerhard, Suraud Éric (2013) Eur Phys J D 67(5):97

    Article  Google Scholar 

  48. Dinh PM, Gao CZ, Klüpfel P, Reinhard PG, Suraud E, Vincendon M, Wang J, Zhang FS (2014) Eur Phys J D 68:239

    Article  Google Scholar 

  49. Wopperer P, Dinh PM, Reinhard PG, Suraud E (2015) Phys Rep 562:1

    Article  CAS  Google Scholar 

  50. Mundt M, Kümmel S, Huber B, Moseler M (2006) Phys Rev B 73(20):205407

    Article  Google Scholar 

  51. Goedecker S, Teter M, Hutter J (1996) Phys Rev B 54:1703

    Article  CAS  Google Scholar 

  52. Hartwigsen C, Goedecker S, Hutter J (1998) Phys Rev B 58:3641

    Article  CAS  Google Scholar 

  53. Messud J, Dinh PM, Reinhard PG, Suraud E (2008) Ann. Phys. (N.Y) 324:955

    Article  Google Scholar 

  54. Dinh P, Romaniello P, Reinhard PG, Suraud E (2013) Phys Rev A 87:032514

    Article  Google Scholar 

  55. Dinh PM, Reinhard PG, Suraud E, Vincendon M (2015) Adv At Mol Opt Phys 64:87

    Article  Google Scholar 

  56. Mundt M, Kümmel S (2006) Phys Rev A 74(2):022511

    Article  Google Scholar 

  57. Mundt M, Kümmel S, van Leeuwen R, Reinhard PG (2007) Phys Rev A 75(5):050501

    Article  Google Scholar 

  58. Messud J, Dinh PM, Reinhard PG, Suraud E (2008) Chem Phys Lett 461:316

    Article  CAS  Google Scholar 

  59. Ciofini I, Chermette H, Adamo C (2003) Chem Phys Lett 380:12

    Article  CAS  Google Scholar 

  60. Calvayrac F, Reinhard PG, Suraud E, Ullrich CA (2000) Phys Rep 337:493

    Article  CAS  Google Scholar 

  61. Reinhard PG, Cusson RY (1982) Nucl Phys A 378:418

    Article  Google Scholar 

  62. Blum V, Lauritsch G, Maruhn JA, Reinhard PG (1992) J Comp Phys 100:364

    Article  Google Scholar 

  63. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  CAS  Google Scholar 

  64. Kümmel S, Brack M, Reinhard PG (1999) Eur Phys J D 9:149

    Article  Google Scholar 

  65. Pederson MR, Heaton RA, Lin CC (1985) J Chem Phys 82:2688

    Article  CAS  Google Scholar 

  66. Maruhn J, Reinhard PG, Suraud E (2010) Simple models of many-fermions systems. Springer, Berlin

    Book  Google Scholar 

  67. Wrigge G, Hoffmann MA, von Issendorff B (2002) Phys Rev A 65:063201

    Article  Google Scholar 

  68. Wopperer P, Dinh PM, Suraud E, Reinhard PG (2012) Phys Rev A 85:015402

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (P.-G. Reinhard) thanks the regional computing center of the Friedrich-Alexander university (RRZE) for supplying resources for the extensive calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Suraud.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “Festschrift in honor of Fernand Spiegelmann”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinhard, P.G., Suraud, E. Self-interaction-correction and electron removal energies. Theor Chem Acc 140, 63 (2021). https://doi.org/10.1007/s00214-021-02753-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02753-w

Keywords

Navigation