Skip to main content
Log in

The structure of 1,3-butadiene clusters

Benchmarking the density-functional based tight-binding method and finite temperature properties

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Molecular clusters of 1,3-butadiene were theoretically investigated using a variety of approaches, encompassing classical force fields and different quantum chemical (QC) methods, as well as density-functional-based tight-binding (DFTB) in its self-consistent-charge (SCC) version. Upon suitable reparametrization, SCC-DFTB reproduces the energy difference and torsional barrier of the trans and gauche conformers of the 1,3-butadiene monomer predicted at the QC level. Clusters of pure trans and gauche conformers containing up to 20 monomers were studied separately, their energy landscapes being explored using the force fields, then locally reoptimized using DFT or SCC-DFTB. The all-trans clusters are generally found to be lower in energy and produce well-ordered structures in which the planar molecules are arranged according to a herringbone motif. Clusters of molecules in the gauche configuration are comparatively much more isotropic. Mixed clusters containing a single gauche molecule were also studied and found to keep the herringbone motif, the gauche impurity usually residing outside. In those clusters, the strain exerted by the cluster on the gauche molecule leads to significant geometrical distortion of the dihedral angle already at zero temperature. Finally, the finite temperature properties were addressed at the force field level, and the results indicate that the more ordered all-trans clusters are also prone to sharper melting mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cami J, Bernard-Salas J, Peeters E, Malek SE (2010) Science 329:1180

    Article  CAS  PubMed  Google Scholar 

  2. Sellgren K, Werner MW, Ingalls JG, Smith JDT, Carleton TM, Joblin C (2010) Astrophys J 722:L54

    Article  CAS  Google Scholar 

  3. Joblin C, Léger A, Martin P (1992) Astrophys J Lett 393:L79

    Article  Google Scholar 

  4. Draine BT (2003) Annu Rev Astron Astrophys 41:241

    Article  Google Scholar 

  5. Gatchell M, Zettergren H (2016) J Phys B At Mol Opt Phys 49:162001

    Article  Google Scholar 

  6. Gatchell M, Delaunay R, D’Angelo G, Mika A, Kulyk K, Domaracka A, Rousseau P, Zettergren H, Huber BA, Cederquist H (2017) Phys Chem Chem Phys 19:19665

    Article  CAS  PubMed  Google Scholar 

  7. Hu W, Xu Y, Ying W, Hu Z, Luo W, Tang F, Huang W, Jia X, Gong D (2020) Mol Cat 497:111219

  8. Montagnon L, Spiegelman F (2007) J Chem Phys 127:084111

  9. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58:7260

    Article  CAS  Google Scholar 

  10. Simon A, Rapacioli M, Rouaut G, Trinquier G, Gadea FX (2017) Philos Trans R Soc A 375:20160195

    Article  Google Scholar 

  11. Simon A, Champeaux JP, Rapacioli M, Moretto Capelle P, Gadeaa FX, Sence M (2018) Theor Chem Acc 137:106

    Article  Google Scholar 

  12. Rapacioli M, Cazaux S, Foley N, Simon A, Hoekstra R, Schlatholter T (2018) Phys Chem Chem Phys 20:22427

    Article  CAS  PubMed  Google Scholar 

  13. Baraban JH, Martin-Drumel MA, Changala PB, Eibenberger S, Nava M, Patterson D, Stanton JF, Ellison GB, McCarthy MC (2018) Ang Chem Int Ed 57:1821

    Article  CAS  Google Scholar 

  14. Sancho-Garcıia JC, Pérez-Jiménez AJ, Moscard F (2001) J Phys Chem A 105:11541

    Article  Google Scholar 

  15. Santiso EE, Buongiorno Nardelli M, Gubbins KE (2008) J Chem Phys 128:034704

    Article  PubMed  Google Scholar 

  16. Lehtonen O, Sundholm D, Send R, Johansson MP (2009) J Chem Phys 131:024301

    Article  PubMed  Google Scholar 

  17. Manna S, Chaudhuri RK, Chattopadhyay S (2020) J Chem Phys 152:244105

    Article  CAS  PubMed  Google Scholar 

  18. Dai D, Majumder D, Balasubramanian K (1998) Chem Phys Lett 287:178

    Article  CAS  Google Scholar 

  19. Wang J, Cieplak P, Kollman KA (2000) J Comput Chem 21:1049

    Article  CAS  Google Scholar 

  20. Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R (1995) Phys Rev B 51:12947

    Article  CAS  Google Scholar 

  21. Seifert G, Porezag D, Frauenheim T (1996) Int J Quantum Chem 58:185

    Article  CAS  Google Scholar 

  22. Elstner M, Seifert G (2014) Philos Trans R Soc A 372:20120483

    Article  Google Scholar 

  23. Spiegelman F, Tarrat N, Cuny J, Dontot L, Posenitskiy E, Martí C, Simon A, Rapacioli M (2020) Adv Phys X 5:1710252

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhechkov L, Heine T, Patchovskii S, Seifert G, Duarte H (2005) J Chem Theor Comput 1:841

    Article  CAS  Google Scholar 

  25. Li J, Zhu T, Cramer C, Truhlar D (1998) J Phys Chem A 102:1820

    Article  CAS  Google Scholar 

  26. Rapacioli M, Spiegelman F, Talbi D, Mineva T, Goursot A, Heine T, Seifert G (2009) J Chem Phys 130:244304

    Article  PubMed  Google Scholar 

  27. Simon A, Spiegelman F (2013) J Chem Phys 138:194304

    Article  Google Scholar 

  28. Rapacioli M, Simon A, Dontot L, Spiegelman F (2012) Phys Stat Solid (b) 249:245

    Article  CAS  Google Scholar 

  29. Gaus M, Cui Q, Elstner M (2011) J Chem Theory Comput 7(4):931

    Article  CAS  Google Scholar 

  30. Yang Y, Yu H, Uork D, Cui Q, Elstner M (2007) J Phys Chem A 111:10861

    Article  CAS  PubMed  Google Scholar 

  31. Gaus M, Goez A, Elstner M (2013) J Chem Theory Comput 9:338

    Article  CAS  PubMed  Google Scholar 

  32. Lutsker V, Aradi B, Niehaus TA (2015) J Chem Phys 143(18):184107

    Article  CAS  PubMed  Google Scholar 

  33. Vuong VQ, Kuriappan JA, Kubillus M, Kranz JJ, Mast T, Niehaus TA, Irle S, Elstner M (2018) J Chem Theory Comput 14:115

    Article  CAS  PubMed  Google Scholar 

  34. Gaus M, Cui Q, Elstner M (2011) J Chem Theory Comput 7:931

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision e.01. Gaussian Inc. Wallingford CT 2009

  36. Grimme S (2003) J Chem Phys 118:9095

    Article  CAS  Google Scholar 

  37. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M et al (2019) Molpro, version 2019.2, a package of ab initio programs. See https://www.molpro.net

  38. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) J Comput Chem 13:1011

    Article  CAS  Google Scholar 

  39. Aradi B, Hourahine B, Frauenheim T (2007) J Phys Chem A 111:5678

    Article  CAS  PubMed  Google Scholar 

  40. Carreira L (1975) J Chem Phys 62:3851

    Article  Google Scholar 

  41. Engeln DCR, Reuss J (1992) Chem Phys 160:423

    Article  Google Scholar 

  42. Stuart SJ, Tutein AB, Harrison JA (2000) J Chem Phys 112:6472

    Article  CAS  Google Scholar 

  43. Karpfen A, Parasuk V (2004) Mol Phys 102:819

    Article  CAS  Google Scholar 

  44. Saumitra Saha FW, Falzon CT (2005) J Chem Phys 123:124315

    Article  PubMed  Google Scholar 

  45. Guijarro A, Vergés JA, San-Fabián E, Chiappe G, Louis E (2016) ChemPhysChem 17:3548

    Article  CAS  PubMed  Google Scholar 

  46. Takeuchi H (2013) Comput Theor Chem 1021:84

    Article  CAS  Google Scholar 

  47. Maillet JB, Boutin A, Buttefey S, Calvo F, Fuchs AH (1998) J Chem Phys 109:329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the ANR JCJC FRAPA, Grant ANR-18-CE30-0021 of the French Agence Nationale de la Recherche. Suvasthika Indrajith, Alicja Domaracka and Patrick Rousseau are gratefully acknowledged for stimulating discussions. We gratefully acknowledge financial support from GDR EMIE 3533. We also thank C. Falvo for calculations with the AIREBO potential.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Douady.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “Festschrift in honor of Fernand Spiegelman”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douady, J., Simon, A., Rapacioli, M. et al. The structure of 1,3-butadiene clusters. Theor Chem Acc 140, 41 (2021). https://doi.org/10.1007/s00214-021-02742-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02742-z

Keywords

Navigation