Skip to main content
Log in

Topological characterization of hexagonal and rectangular tessellations of kekulenes as traps for toxic heavy metal ions

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

A Correction to this article was published on 23 July 2021

This article has been updated

Abstract

Cycloarenes are polycyclic aromatic hydrocarbons formed by circularly fused benzene rings, which provide a potential cavity trap for metal ions. These polycyclic aromatics have been the focus of several studies due to their superaromaticity, magnetic and other electronic and geometric properties. The first representative of these macrocyclic conjugated compounds is kekulene, a doughnut-shaped structure consisting of cyclically arranged benzene rings with intriguing structural features that are suitable for theoretical studies including the study of conjugation circuits of \(\pi \) electrons. Topological characterization of such structures is thus essential for the prediction of their properties. In this study, we present two novel series of giant polycyclic compounds that are generated through tessellations of several kekulene doughnuts providing a potential molecular belt with multiple cavities. We have computed a number of topological quantity indices for such a 2D-sheet comprising of several kekulenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Change history

References

  1. Menzie CA, Potocki BB, Santodonato J (1992) Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26(7):1278–1284

    Article  CAS  Google Scholar 

  2. Masih J, Singhvi R, Kumar K et al (2012) Seasonal variation and sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a semi arid tract of northern India. Aerosol Air Qual Res 12(4):515–525

    Article  CAS  Google Scholar 

  3. Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypti J Pet 25(1):107–123

    Article  Google Scholar 

  4. Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5:169–195

    Article  CAS  PubMed  Google Scholar 

  5. Diederich F, Staab HA (1978) Benzenoid versus annulenoid aromaticity: synthesis and properties of kekulene. Angewandte Chemie Int Edit Engl 17(5):372–374

    Article  Google Scholar 

  6. Funhoff DJ, Staab HA (1986) Cyclo[d.e.d.e.e.d.e.d.e.e.]decakisbenzene, a new cycloarene. Angewandte Chemie Int Edit English 25:742–744

    Article  Google Scholar 

  7. Schweitzer D, Hausser KH, Vogler H et al (1982) Electronic properties of kekulene. Mol Phys 46(5):1141–1153

    Article  CAS  Google Scholar 

  8. Liu C, Sandoval-Salinas ME, Hong Y et al (2018) Macrocyclic polyradicaloids with unusual super-ring structure and global aromaticity. Chem 4:1586–1595

    Article  CAS  Google Scholar 

  9. Buttrick JC, King BT (2017) Kekulenes, cycloarenes, and heterocycloarenes: addressing electronic structure and aromaticity through experiments and calculations. Chem Soc Rev 46(1):7–20

    Article  CAS  PubMed  Google Scholar 

  10. Randić M (2003) Aromaticity of polycyclic conjugated hydrocarbons. Chem Rev 103:3449–3605

    Article  PubMed  CAS  Google Scholar 

  11. Aihara J-I, Makino M (2014) Constrained clar formulas of coronoid hydrocarbons. J Phys Chem A 118(7):1258–1266

    Article  CAS  PubMed  Google Scholar 

  12. Staab HA, Diederich F (1983) Cycloarenes, A new class of aromatic compounds. I. Synth Kekulene. Chemische Berichte 116(10):3487–3503

    Article  CAS  Google Scholar 

  13. Liu C, Ni Y, Lu X et al (2019) Global aromaticity in macrocyclic polyradicaloids: hückel’s rule or Baird’s rule? Acc Chem Res 52:2309–2321

    Article  CAS  PubMed  Google Scholar 

  14. Aihara J-I (2018) Graph theory of ring-current diamagnetism. Bull Chem Soc Jpn 91:274–303

    Article  CAS  Google Scholar 

  15. Aihara J-I (2016) Graph theory of aromatic stabilization. Bull Chem Soc Jpn 89(12):1425–1454

    Article  CAS  Google Scholar 

  16. Dias JR (2013) Valence-bond determination of diradical character of polycyclic aromatic hydrocarbons: from acenes to rectangular benzenoids. J Phys Chem A 117(22):4716–4725

    Article  CAS  PubMed  Google Scholar 

  17. Aihara J-I, Makino M, Ishida T et al (2013) Analytical study of superaromaticity in cycloarenes and related coronoid hydrocarbons. J Phys Chem A 117(22):4688–4697

    Article  CAS  PubMed  Google Scholar 

  18. Dias JR (2013) Search for singlet-triplet bistability or biradicaloid properties in polycyclic conjugated hydrocarbons: a valence-bond analysis. Mol Phys 111(6):735–751

    Article  CAS  Google Scholar 

  19. Dias JR (2014) What do we know about \(\text{ C}_{{24}}\text{ H}_{{14}}\) benzenoid, fluoranthenoid, and indacenoid hydrocarbons? Polycyclic Aromat Compd 34(2):177–190

    Article  CAS  Google Scholar 

  20. Dias JR (2014) Nonplanarity index for fused benzenoid hydrocarbons. Polycyclic Aromat Compd 34(2):161–176

    Article  CAS  Google Scholar 

  21. Steiner E, Fowler PW, Jenneskens LW et al (2001) Visualisation of counter-rotating ring currents in kekulene. Chem Commun 7:659–660

    Article  Google Scholar 

  22. Jiao H, Schleyer PVR (1996) Is kekulene really superaromatic? Angewandte Chemie Int Edit English 35(20):2383–2386

    Article  Google Scholar 

  23. Kumar B, Viboh RL, Bonifacio MC et al (2012) Septulene: the heptagonal homologue of kekulene. Angew Chem Int Ed 51:12795–12800

    Article  CAS  Google Scholar 

  24. Majewski MA, Hong Y, Lis T et al (2016) Octulene: a hyperbolic molecular belt that binds chloride anions. Angew Chem Int Ed 55(45):14072–14076

    Article  CAS  Google Scholar 

  25. Aihara J-I (1976) On the number of aromatic sextets in a benzenoid hydrocarbon. Bull Chem Soc Jpn 49:1429–1430

    Article  CAS  Google Scholar 

  26. Pozo I, Majzik Z, Pavliček N et al (2019) Revisiting kekulene: synthesis and single-molecule imaging. J Am Chem Soc 141(39):15488–15493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arejdal M (2020) Prediction of the magnetocaloric behaviors of the kekulene structure for the magnetic refrigeration. Results Phys 18:103342

    Article  Google Scholar 

  28. Ji L, Shu Y, Wenxiang W et al (2020) Potential application of kekulene nanoring in the Li-ion batteries: DFT studies. Comput Theor Chem 1181:112796

    Article  CAS  Google Scholar 

  29. Balasubramanian K (2018) Combinatorial enumeration of isomers of superaromatic polysubstituted cycloarenes and coronoid hydrocarbons with applications to NMR. J Phys Chem A 122(41):8243–8257

    Article  CAS  PubMed  Google Scholar 

  30. Balasubramanian K (2018) Mathematical and computational techniques for drug discovery: promises and developments. Curr Top Med Chem 18(32):2774–2799

    Article  CAS  PubMed  Google Scholar 

  31. Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics. Wiley, Weinheim

    Book  Google Scholar 

  32. Khadikar PV, Karmakar S, Agrawal VK et al (2005) Szeged index - applications for drug modeling. Lett Drug Design Discov 2(8):606–624

    Article  CAS  Google Scholar 

  33. Rouvray DH (1987) The modeling of chemical phenomena using topological indices. J Comput Chem 8(4):470–480

    Article  CAS  Google Scholar 

  34. Basak SC, Mills D, Mumtaz MM (2007) Quantitative structure-activity relationship (QSAR) study of dermal absorption using theoretical molecular descriptors. SAR QSAR Environ Res 18(1–2):45–55

    Article  CAS  PubMed  Google Scholar 

  35. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley, Weinheim

    Book  Google Scholar 

  36. Klavžar S, Nadjafi-Arani MJ (2014) Wiener index in weighted graphs via unification of \(\Theta ^*\)-classes. Eur J Comb 36:71–76

    Article  Google Scholar 

  37. Yousefi-Azari H, Khalifeh MH, Ashrafi AR (2011) Calculating the edge Wiener and edge Szeged indices of graphs. J Comput Appl Math 235(16):4866–4870

    Article  Google Scholar 

  38. Črepnjak M, Tratnik N (2017) The Szeged index and the Wiener index of partial cubes with applications to chemical graphs. Appl Math Comput 309:324–333

    Google Scholar 

  39. Randić M (2008) On history of the Randić index and emerging hostility toward chemical graph theory. MATCH Commun Math Comput Chem 59(1):5–124

    Google Scholar 

  40. Estrada E (2017) The ABC matrix. J Math Chem 55(4):1021–1033

    Article  CAS  Google Scholar 

  41. Arockiaraj M, Clement J, Balasubramanian K (2020) Topological indices and their applications to circumcised donut benzenoid systems, kekulenes and drugs. Polycyclic Aromat Compd 40(2):280–303

    Article  CAS  Google Scholar 

  42. Arockiaraj M, Klavzar S, Clement J et al (2019) Edge distance-based topological indices of strength-weighted graphs and their application to coronoid systems carbon nanocones and \( SiO_2 \) nanostructures. Mole Inf 38(11–12):1900039

    Article  CAS  Google Scholar 

  43. Arockiaraj M, Clement J, Paul D et al (2021) Quantitative structural descriptors of sodalite materials. J Mol Struct 1223:128766

    Article  CAS  Google Scholar 

  44. Arockiaraj M, Clement J, Tratnik N (2019) Mostar indices of carbon nanostructures and circumscribed donut benzenoid systems. Int J Quantum Chem 119(24):e26043

    Article  CAS  Google Scholar 

  45. Arockiaraj M, Kavitha SRJ, Balasubramanian K et al (2020) Topological characterization of coronoid polycyclic aromatic hydrocarbons. Polycycl Aromat Compd 40(3):784–802

    Article  CAS  Google Scholar 

  46. Prabhu S, Murugan G, Arockiaraj M et al (2021) Molecular topological characterization of three classes of polycyclic aromatic hydrocarbons. J Mol Struct 1229:129501

    Article  CAS  Google Scholar 

  47. Arockiaraj M, Clement J, Tratnik N (2020) Weighted mostar indices as measures of molecular peripheral shapes with applications to graphene, graphyne and graphdiyne nanoribbons. SAR QSAR Environ Res 31(3):187–208

    Article  CAS  PubMed  Google Scholar 

  48. Arockiaraj M, Klavzar S, Mushtaq S et al (2019) Topological characterization of the full \( k \)-subdivision of a family of partial cubes and their applications to \( \alpha \)-types of novel graphyne and graphdiyne materials. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2019.1703766

    Article  Google Scholar 

  49. Arockiaraj M, Liu J-B, Arulperumjothi M et al (2020) On certain topological indices of three-layered single-walled titania nanosheets. Comb Chem High Throughput Screen. https://doi.org/10.2174/1386207323666201012143430

    Article  PubMed  Google Scholar 

  50. Arockiaraj M, Kavitha SRJ, Mushtaq S et al (2020) Relativistic topological molecular descriptors of metal trihalides. J Mol Struct 1217:128368

    Article  CAS  Google Scholar 

  51. Arockiaraj M, Clement J, Balasubramanian K (2018) Topological properties of carbon nanocones. Polycycl Aromat Compd 40(5):1332–1346

    Article  CAS  Google Scholar 

  52. Klavžar S (2006) On the canonical metric representation, average distance, and partial Hamming graphs. Eur J Combin 27(1):68–73

    Article  Google Scholar 

  53. Klavžar S, Gutman I, Mohar B (1995) Labeling of benzenoid systems which reflects the vertex-distance relation. J Chem Inf Comput Sci 35(3):590–593

    Article  Google Scholar 

  54. Arockiaraj M, Clement J, Balasubramanian K (2016) Analytical expressions for topological properties of polycyclic benzenoid networks. J Chemom 30(11):682–697

    Article  CAS  Google Scholar 

  55. Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107(3):718–747

    Article  CAS  PubMed  Google Scholar 

  56. Loh KP, Tong SW, Wu J (2016) Graphene and graphene-like molecules: prospects in solar cells. J Am Chem Soc 138(4):1095–1102

    Article  CAS  PubMed  Google Scholar 

  57. Zhang L, Cao Y, Colella NS et al (2015) Unconventional, chemically stable, and soluble two-dimensional angular polycyclic aromatic hydrocarbons: from molecular design to device applications. Acc Chem Res 48(3):500–509

    Article  CAS  PubMed  Google Scholar 

  58. Hajgató B, Ohno K (2004) Novel series of giant polycyclic aromatic hydrocarbons: electronic structure and aromaticity. Chem Phys Lett 385(5):512–518

    Article  CAS  Google Scholar 

  59. Khadikar PV, Diudea MV, Singh J et al (2006) Use of PI index in computer-aided designing of bioactive compounds. Curr Bioact Compd 2:19–56

    Article  CAS  Google Scholar 

  60. Balasubramanian K (2020) Computational and artificial intelligence techniques for drug discovery and administration. comprehensive pharmacolocgy. Elsevier, Netherlands. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Computational+and+Artificial+Intelligence+Techniques+for+Drug+Discovery+and+Administration&btnG=

    Google Scholar 

  61. Balasubramanian K (2004) Group theoretical analysis of vibrational modes and rovibronic levels of extended aromatic C\( _{48} \)N\( _{12}\) azafullerene. Chem Phys Lett 391(1–3):64–68

    Article  CAS  Google Scholar 

  62. Balasubramanian K, Basak SC (2016) Metabolic electron attachment as a primary mechanism for toxicity potentials of halocarbons. Current Comput Aided Drug Design 12(1):62–72

    Article  CAS  Google Scholar 

  63. Srimathi U, Nagarajan V, Chandiramouli R (2018) Interaction of Imuran, Pentasa and Hyoscyamine drugs and solvent effects on graphdiyne nanotube as a drug delivery system - A DFT study. J Mol Liq 265:199–207

    Article  CAS  Google Scholar 

  64. Kaatz FH, Bultheel A (2013) Statistical properties of carbon nanostructure. J Math Chem 51:1211–1220

    Article  CAS  Google Scholar 

  65. Schwaiger LK, Parsons-Moss T, Hubaud A, et al (2010) Actinide and lanthanide complexation by organically modified mesoporous silica. Abstracts of Papers of the American Chemical Society 239: 98-NUCL, MAR 21 2010, WOS:000208189303645. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Actinide+and+lanthanide+complexation+by+organically+modified+mesoporous+silica&btnG=

  66. Parsons-Moss T, Schwaiger LK, Hubaud A, et al (2011) Plutonium complexation by phosphonate-functionalized mesoporous silica. Abstracts of Papers of the American Chemical Society 241:48-NUCL, 241st National Meeting and Exposition of the American-Chemical-Society (ACS), WOS:000291982806306. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Plutonium+complexation+by+phosphonate-functionalized+mesoporous+silica&btnG=

  67. Qin Q, Li X, Zhuang J et al (2015) Long-distance transport of cadmium from roots to leaves of Solanum melongena. Ecotoxicology 24:2224–2232

    Article  CAS  PubMed  Google Scholar 

  68. Mezey PG (2014) Fuzzy electron density fragments in macromolecular quantum chemistry, combinatorial quantum chemistry, functional group analysis, and shape-activity relations. Acc Chem Res 47(9):2821–2827

    Article  CAS  PubMed  Google Scholar 

  69. Mezey PG (2012) Natural molecular fragments, functional groups, and holographic constraints on electron densities. Phys Chem Chem Phys 14:8516–8522

    Article  CAS  PubMed  Google Scholar 

  70. Benavides-Garcia M, Balasubramanian K (1994) Bond energies, ionization potentials, and the singlet-triplet energy separations of \(\text{ SnCl}_{{2}}\), \(\text{ SnBr}_{{2}}\), \(\text{ SnI}_{{2}}\), \(\text{ PbCl}_{{2}}\), \(\text{ PbBr}_{{2}}\), \(\text{ PbI}_{{2}}\), and their positive ions. J Chem Phys 100(4):2821–2830. https://scholar.google.com/scholar?cluster=15737565691028385529

    Article  CAS  Google Scholar 

  71. Majumdar D, Balasubramanian K, Nitsche H (2002) A comparative theoretical study of bonding in \(\text{ UO}_{2}^{++}\), \(\text{ UO}_{2}^{+}\), \(\text{ UO}_{{2}}\), \(\text{ UO}_{2}^{-}\), OUCO, \(\text{ O}_{{2}}\)U(CO)\(_{2}\) and \(\text{ UO}_{{2}}\text{ CO}_{{3}}\). Chem Phys Lett 361(1–2):143–151. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comparative+theoretical+study+of+bonding+in+UO2%2B%2B%2C+UO2%2B%2C+UO2%2C+UO2%E2%88%92%2C+OUCO%2C+O2U+%28CO%29+2+and+UO2CO3&btnG=

    Article  CAS  Google Scholar 

  72. Balasubramanian K (1989) Ten low-lying electronic states of \(\text{ Pd}_{{3}}\). J Chem Phys 91(1):307–313

    Article  CAS  Google Scholar 

  73. Balasubramanian K, Liao DW (1991) Spectroscopic constants and potential energy curves of Bi2 and Bi2-. J Chem Phys 95:3064–3073

    Article  CAS  Google Scholar 

  74. Balasubramanian K, Sumathi K, Dai D (1991) Group V trimers and their positive ions: the electronic structure and potential energy surfaces. J Chem Phys 95:3494–3505

    Article  CAS  Google Scholar 

  75. Cao Z, Balasubramanian K, Calvert MG, Nitsche H (2009) Solvation effects on isomeric preferences of curium(III) complexes with multidentate phosphonopropionic acid ligands: CmH2PPA2+ and CmHPPA+ complexes. Inorg Chem 48(20):9700–9714

    Article  CAS  PubMed  Google Scholar 

  76. Vijayakumar M, Balasubramanian K (1992) Electronic states of thallium clusters and their positive ions [Tl, Tl ( =2–5)]. J Chem Phys 97(10):7474–7488

    Article  CAS  Google Scholar 

  77. Dingguo Dai, Balasubramanian K (1992) Potential energy surfaces for platinum (Pt3) + hydrogen atom and palladium (Pd3) + hydrogen atom interactions. J Phys Chem 96(8):3279–3282

    Article  Google Scholar 

  78. Majumdar D, Balasubramanian K (1997) Theoretical studies of CO interaction on Rh3 cluster. J Chem Phys 106(17):7215–7222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to dedicate this work to Professor Ramon Carbó -Dorca Carrė on the occasion of his 80th birthday and express our appreciation for his sustained contributions to quantum similarity measures and several applications of hypercubes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Balasubramanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised as the links to Google scholar are missing for the references [60, 65, 66, 70 and 71] and hence they were not redirected to appropriate articles on the Springer website.

Published as part of the special collection of articles “Festschrift in honour of Prof. Ramon Carbó-Dorca”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arockiaraj, M., Prabhu, S., Arulperumjothi, M. et al. Topological characterization of hexagonal and rectangular tessellations of kekulenes as traps for toxic heavy metal ions. Theor Chem Acc 140, 43 (2021). https://doi.org/10.1007/s00214-021-02733-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02733-0

Keywords

Navigation