Skip to main content
Log in

Barium strontium titanate-based perovskite materials from DFT perspective: assessing the structural, electronic, vibrational, dielectric and energetic properties

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This paper presents a current theoretical study on structural, electronic, vibrational, dielectric and energetic properties of the pristine cubic and tetragonal barium strontium titanate (BSTc and BSTt), as well as Sn-doped cubic and tetragonal barium strontium titanate (BSTSc and BSTSt) crystals. For this purpose, first-principle calculations within the Density Functional Theory method at the B3LYP level are implemented in the CRYSTAL14 code. Structural and thermodynamic analysis indicates that the change in geometry, as well as the Sn-doping process in BST samples, induces structural defects, which govern its electronic structure, generating singular bandgap values attributed to the perturbation of electronic levels in the vicinity of the Fermi level. Moreover, the vibration analysis was helpful to identify how the Sr and Sn doping process along with the A- and B-site of perovskite structure can affect the structural disorder, mainly for the tetragonal phase. Besides, electron density maps showed that the electronic properties were associated with the presence of [AO12] (A=Ba and Sr) and [MO6] (M=Ti and Sn) clusters with distinct bonding character. Furthermore, our structural, vibrational, and electronic calculations are in good agreement with the available experimental data and pave the avenue towards the complete understanding of the overall properties of perovskite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mohamed EA, Nabhan E, Ratep A, Hassan FM, Tahoon K (2020) Influence of BaTiO3 nanoparticles/clusters on the structural and dielectric properties of glasses-nanocomposites. Phys B Condens Matter 589:412220

    Article  CAS  Google Scholar 

  2. Stanciu CA, Cernea M, Secu EC, Aldica G, Ganea P, Trusca R (2017) Lanthanum influence on the structure, dielectric properties and luminescence of BaTiO3 ceramics processed by spark plasma sintering technique. J Alloys Compd 706:538–545

    Article  CAS  Google Scholar 

  3. Piskunov S, Eglitis RI (2015) First principles hybrid DFT calculations of BaTiO3/SrTiO3 (001) interface. Solid State Ion 274:29–33

    Article  CAS  Google Scholar 

  4. Chao S, Dogan F (2011) BaTiO3–SrTiO3 layered dielectrics for energy storage. Mater Lett 65(6):978–981

    Article  CAS  Google Scholar 

  5. Kang F, Zhang L, Huang B, Mao P, Wang Z, Sun Q, Wang J, Hu D (2020) Enhanced electromechanical properties of SrTiO3-BiFeO3-BaTiO3 ceramics via relaxor behavior and phase boundary design. J Eur Ceram Soc 40(4):1198–1204

    Article  CAS  Google Scholar 

  6. Jongprateep O, Sato N (2019) Effects of sintering temperatures on microstructure and dielectric constant of Ba0.05SrxCa0.95-xTiO3 where (x = 0, 0.475 and 0.95). Mater Today-Proc 17:1898–1905

    Article  CAS  Google Scholar 

  7. Fujisawa J-i, Eda T, Hanaya M (2017) Comparative study of conduction-band and valence-band edges of TiO2, SrTiO3, and BaTiO3 by ionization potential measurements. Chem Phys Lett 685:23–26

    Article  CAS  Google Scholar 

  8. Gartnerova V, Pacherova O, Klinger M, Jelinek M, Jager A, Tyunina M (2017) Strain fluctuations in BaTiO3/SrTiO3 heterostructures. Mater Res Bull 89:180–184

    Article  CAS  Google Scholar 

  9. Mbarki R, Haskins JB, Kinaci A, Cagin T (2014) Temperature dependence of flexoelectricity in BaTiO3 and SrTiO3 perovskite nanostructures. Phys Lett A 378(30):2181–2183

    Article  CAS  Google Scholar 

  10. Assirey EAR (2019) Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharm J 27(6):817–829

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kondo S, Yamada T, Tagantsev AK, Ma P, Leuthold J, Martelli P, Boffi P, Martinelli M, Yoshino M, Nagasaki T (2019) Large impact of strain on the electro-optic effect in (Ba, Sr)TiO3 thin films: experiment and theoretical comparison. Appl Phys Lett 115(9):092901

    Article  Google Scholar 

  12. Gao L, Guan Z, Huang S, Liang K, Chen H, Zhang J (2019) Enhanced dielectric properties of barium strontium titanate thin films by doping modification. J Mater Sci Mater Electron 30(14):12821–12839

    Article  CAS  Google Scholar 

  13. Xing Y, Liang H, Li X, Si L (2009) High-frequency dielectric properties of BSTO ceramic prepared with hydrothermal synthesized SrTiO3 and BaTiO3 powders. Particuology 7(5):414–418

    Article  CAS  Google Scholar 

  14. Slimani Y, Unal B, Hannachi E, Selmi A, Almessiere MA, Nawaz M, Baykal A, Ercan I, Yildiz M (2019) Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3SrTiO3/(SiO2)x nanocomposites. Ceram Int 45(9):11989–12000

    Article  CAS  Google Scholar 

  15. Kim SW, Choi HI, Lee MH, Park JS, Kim DJ, Do D, Kim MH, Song TK, Kim WJ (2013) Electrical properties and phase of BaTiO3–SrTiO3 solid solution. Ceram Int 39:S487–S490

    Article  CAS  Google Scholar 

  16. Yustanti E, Hafizah MAE, Manaf A (2016) Synthesis of strontium substituted barium titanate nanoparticles by mechanical alloying and high power ultrasonication destruction. AIP Conf Proc 1725(1):020102

    Article  Google Scholar 

  17. Pasha UM, Zheng H, Thakur OP, Feteira A, Whittle KR, Sinclair DC, Reaney IM (2007) In situ Raman spectroscopy of A-site doped barium titanate. Appl Phys Lett 91(6):062908

    Article  Google Scholar 

  18. Berbecaru C, Alexandru HV, Porosnicu C, Velea A, Ioachim A, Nedelcu L, Toacsan M (2008) Ceramic materials Ba(1–x)SrxTiO3 for electronics—synthesis and characterization. Thin Solid Films 516(22):8210–8214

    Article  CAS  Google Scholar 

  19. Mohan CRK, Bajpai PK (2008) Effect of sintering optimization on the electrical properties of bulk BaxSr1−xTiO3 ceramics. Phys B Condens Matter 403(13):2173–2188

    Article  CAS  Google Scholar 

  20. Shen Z-Y, Wang Y, Tang Y, Yu Y, Luo W-Q, Wang X, Li Y, Wang Z, Song F (2019) Glass modified barium strontium titanate ceramics for energy storage capacitor at elevated temperatures. J Materiomics 5(4):641–648

    Article  Google Scholar 

  21. Hou B, Xu Y, Wu D, Sun Y (2006) Preparation and characterization of single-crystalline barium strontium titanate nanocubes via solvothermal method. Powder Technol 170(1):26–30

    Article  CAS  Google Scholar 

  22. Irzaman PIR, Aminullah SH, Alatas H (2016) Development of ferroelectric solar cells of barium strontium titanate (BaxSr1-xTiO3) for subtituting conventional battery in LAPAN-IPB satellite (LISAT). Proc Environ Sci 33:607–614

    Article  CAS  Google Scholar 

  23. Curecheriu LP, Mitoseriu L, Ianculescu A (2009) Nonlinear dielectric properties of Ba1−xSrxTiO3 ceramics. J Alloys Compd 482(1):1–4

    CAS  Google Scholar 

  24. Zuo XH, Deng XY, Chen Y, Ruan M, Li W, Liu B, Qu Y, Xu B (2010) A novel method for preparation of barium strontium titanate nanopowders. Mater Lett 64(10):1150–1153

    Article  CAS  Google Scholar 

  25. Jung DS, Hong SK, Cho JS, Kang YC (2008) Morphologies and crystal structures of nano-sized Ba1−xSrxTiO3 primary particles prepared by flame spray pyrolysis. Mater Res Bull 43(7):1789–1799

    Article  CAS  Google Scholar 

  26. Rashad MM, Turky AO, Kandil AT (2013) Optical and electrical properties of Ba1−xSrxTiO3 nanopowders at different Sr2+ ion content. J Mater Sci Mater Electron 24(9):3284–3291

    Article  CAS  Google Scholar 

  27. Simões AZ, Moura F, Onofre TB, Ramirez MA, Varela JA, Longo E (2010) Microwave-hydrothermal synthesis of barium strontium titanate nanoparticles. J Alloys Compd 508(2):620–624

    Article  Google Scholar 

  28. Alexandru HV, Berbecaru C, Ioachim A, Nedelcu L, Dutu A (2006) BST solid solutions, temperature evolution of the ferroelectric transitions. Appl Surf Sci 253(1):354–357

    Article  CAS  Google Scholar 

  29. Veselinović L, Mitrić M, Mančić L, Vukomanović M, Hadžić B, Marković S, Uskoković D (2014) The effect of Sn for Ti substitution on the average and local crystal structure of BaTi1−xSnxO3 (0 ≤ x ≤ 0.20). J Appl Crystallogr 47(3):999–1007

    Article  Google Scholar 

  30. Watanabe Y (2019) Accurate semiempirical analytical formulas for spontaneous polarization by crystallographic parameters of SrTiO3-BaTiO3 system by ab initio calculations. Comput Mater Sci 158:315–323

    Article  CAS  Google Scholar 

  31. Atta NF, Ahmed Galal, El-Ads EH (2016) Perovskite nanomaterials—synthesis, characterization, and applications. In: Likun P, Zhu G (eds) Perovskite materials—synthesis, characterisation, properties, and applications. IntechOpen

  32. Piskunov S, Eglitis RI (2016) Comparative ab initio calculations of SrTiO3/BaTiO3 and SrZrO3/PbZrO3 (001) heterostructures. Nucl Instrum Methods Phys Res B 374:20–23

    Article  CAS  Google Scholar 

  33. Lee H-S, Mizoguchi T, Yamamoto T, Kang S-JL, Ikuhara Y (2007) First-principles calculation of defect energetics in cubic-BaTiO3 and a comparison with SrTiO3. Acta Mater 55(19):6535–6540

    Article  CAS  Google Scholar 

  34. Zhang R-z, Hu X-y, Guo P, Wang C-l (2012) Thermoelectric transport coefficients of n-doped CaTiO3, SrTiO3 and BaTiO3: a theoretical study. Phys B Condens Matter 407(7):1114–1118

    Article  CAS  Google Scholar 

  35. Rizwan M, Hajra ZI, Shakil M, Gillani SSA, Usman Z (2020) Electronic, structural and optical properties of BaTiO3 doped with lanthanum (La): insight from DFT calculation. Optik 211:164611

    Article  CAS  Google Scholar 

  36. Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco P, Noël Y, Causà M, Rérat M, Kirtman B (2014) CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int J Quantum Chem 114(19):1287–1317

    Article  CAS  Google Scholar 

  37. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37:785–789

    Article  CAS  PubMed  Google Scholar 

  38. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  39. Longo VM, Cavalcante LS, Erlo R, Mastelaro VR, de Figueiredo AT, Sambrano JR, de Lázaro S, Freitas AZ, Gomes L, Vieira ND, Varela JA, Longo E (2008) Strong violet–blue light photoluminescence emission at room temperature in SrZrO3: joint experimental and theoretical study. Acta Mater 56(10):2191–2202

    Article  CAS  Google Scholar 

  40. Longo VM, Figueiredo ATd, Lázaro Sd, Gurgel MF, Costa MGS, Paiva-Santos CO, Varela JA, Longo E, Mastelaro VR, Vicente FSD, Hernandes AC, Franco RWA (2008) Structural conditions that leads to photoluminescence emission in SrTiO3: an experimental and theoretical approach. J Appl Phys 104(2):023515

    Article  Google Scholar 

  41. Longo VM, Cavalcante LS, Costa MGS, Moreira ML, de Figueiredo AT, Andrés J, Varela JA, Longo E (2009) First principles calculations on the origin of violet-blue and green light photoluminescence emission in SrZrO3 and SrTiO3 perovskites. Theor Chem Acc 124(5):385

    Article  CAS  Google Scholar 

  42. Moreira E, Henriques JM, Azevedo DL, Caetano EWS, Freire VN, Albuquerque EL (2011) Structural, optoelectronic, infrared and Raman spectra of orthorhombic SrSnO3 from DFT calculations. J Solid State Chem 184(4):921–928

    Article  CAS  Google Scholar 

  43. Oliveira MC, Gracia L, de Assis M, Rosa ILV, do Carmo Gurgel MF, Longo E, Andrés J (2017) Mechanism of photoluminescence in intrinsically disordered CaZrO3 crystals: first principles modeling of the excited electronic states. J Alloys Compd 722:981–995

    Article  CAS  Google Scholar 

  44. Oliveira MC, Ribeiro RAP, Gracia L, de Lazaro SR, de Assis M, Oliva M, Rosa ILV, Gurgel MFdC, Longo E, Andrés J (2018) Experimental and theoretical study of the energetic, morphological, and photoluminescence properties of CaZrO3:Eu3+. CrystEngComm 20(37):5519

    Article  CAS  Google Scholar 

  45. Tranquilin RL, Lovisa LX, Almeida CRR, Paskocimas CA, Li MS, Oliveira MC, Gracia L, Andres J, Longo E, Motta FV, Bomio MRD (2019) Understanding the white-emitting CaMoO4 Co-Doped Eu3+, Tb3+, and Tm3+ phosphor through experiment and computation. J Phys Chem C 123(30):18536–18550

    Article  CAS  Google Scholar 

  46. Oliveira MC, Andrés J, Gracia L, de Oliveira MSMP, Mercury JMR, Longo E, Nogueira IC (2019) Geometry, electronic structure, morphology, and photoluminescence emissions of BaW1-xMoxO4 (x = 0, 0.25, 0.50, 0.75, and 1) solid solutions: theory and experiment in concert. Appl Surf Sci 463:907–917

    Article  CAS  Google Scholar 

  47. Eglitis R, Kruchinin SP (2020) Ab initio calculations of ABO3perovskite (001), (011) and (111) nano-surfaces, interfaces and defects. Mod Phys Lett B 34(19n20):2040057

    Article  CAS  Google Scholar 

  48. Eglitis RI (2019) Ab initio calculations of CaZrO3, BaZrO3, PbTiO3 and SrTiO3 (001), (011) and (111) surfaces as well as their (001) interfaces. Integr Ferroelectr 196(1):7–15

    Article  CAS  Google Scholar 

  49. Eglitis R, Purans J, Popov AI, Jia R (2019) Systematic trends in YAlO3, SrTiO3, BaTiO3, BaZrO3 (001) and (111) surface ab initio calculations. Int J Mod Phys B 33(32):1950390

    Article  CAS  Google Scholar 

  50. Maul J, Santos IMG, Sambrano JR, Erba A (2016) Thermal properties of the orthorhombic CaSnO3 perovskite under pressure from ab initio quasi-harmonic calculations. Theor Chem Acc 135(2):36

    Article  Google Scholar 

  51. Cavalcante LS, Batista NC, Badapanda T, Costa MGS, Li MS, Avansi W, Mastelaro VR, Longo E, Espinosa JWM, Gurgel MFC (2013) Local electronic structure, optical bandgap and photoluminescence (PL) properties of Ba(Zr0.75Ti0.25)O3 powders. Mat Sci Semicon Proc 16(3):1035–1045

    Article  CAS  Google Scholar 

  52. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276

    Article  CAS  Google Scholar 

  53. Kokalj A (1999) XCrySDen-a new program for displaying crystalline structures and electron densities. J Mol Graph Model 17(3–4):176–216

    Article  CAS  PubMed  Google Scholar 

  54. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188

    Article  Google Scholar 

  55. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst Sec A 32(5):751–767

    Article  Google Scholar 

  56. Souza IA, Cavalcante LS, Sczancoski JC, Moura F, Paiva-Santos CO, Varela JA, Simões AZ, Longo E (2009) Structural and dielectric properties of Ba0.5Sr0.5(SnxTi1−x)O3 ceramics obtained by the soft chemical method. J Alloys Compd 477(1):877–882

    Article  CAS  Google Scholar 

  57. Chihaoui S, Seveyrat L, Perrin V, Kallel I, Lebrun L, Khemakhem H (2017) Structural evolution and electrical characteristics of Sn-doped Ba0.8Sr0.2TiO3 ceramics. Ceram Int 43(1, Part A):427–432

    Article  CAS  Google Scholar 

  58. Joseph J, Vimala TM, Raju J, Murthy VRK (1999) Structural investigations on the (Ba, Sr)(Zr, Ti)O3 system. J Phys D Appl Phys 32(9):1049–1057

    Article  CAS  Google Scholar 

  59. Turky AO, Rashad MM, Bechelany M (2016) Tailoring optical and dielectric properties of Ba0.5Sr0.5TiO3 powders synthesized using citrate precursor route. Mater Des 90:54–59

    Article  CAS  Google Scholar 

  60. Souza IA, Simões AZ, Longo E, Varela JA, Pizani PS (2006) Photoluminescence at room temperature in disordered Ba0.50Sr0.50(Ti0.80Sn0.20)O3 thin films. Appl Phys Lett 88(21):211911

    Article  Google Scholar 

  61. Kuo S-Y, Liao W-Y, Hsieh W-F (2001) Structural ordering transition and repulsion of the giant LO-TO splitting in polycrystalline BaxSr1-xTiO3. Phys Rev B 64(22):224103

    Article  Google Scholar 

  62. Tenne DA, Soukiassian A, Xi XX, Choosuwan H, Guo R, Bhalla AS (2004) Lattice dynamics in BaxSr1-xTiO3 single crystals: a Raman study. Phys Rev B 70(17):174302

    Article  Google Scholar 

  63. Souza IA, Gurgel MFC, Santos LPS, Góes MS, Cava S, Cilense M, Rosa ILV, Paiva-Santos CO, Longo E (2006) Theoretical and experimental study of disordered Ba0.45Sr0.55TiO3 photoluminescence at room temperature. Chem Phys 322(3):343–348

    Article  CAS  Google Scholar 

  64. Ganjir R, Bajpai PK (2019) Influence of Co doping on the structural, dielectric and Raman properties of Ba0.75Sr0.25Ti1−xCoxO3. J Electron Mater 48(1):634–641

    Article  CAS  Google Scholar 

  65. Bajpai PK, Mohan CRK, Ganjir R, Kumar R, Kumar A, Katiyar RS (2018) Swift heavy ion induced material modifications in Ba1-xSrxTiO3 ceramics as probed by temperature-dependent Raman spectroscopy. J Raman Spectrosc 49(2):324–335

    Article  CAS  Google Scholar 

  66. Foresman J, Frisch A (2015) Exploring chemistry with electronic structure methods, 3rd edn. Gaussian Inc, Pittsburgh

    Google Scholar 

  67. Hautier G, Ong SP, Jain A, Moore CJ, Ceder G (2012) Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability. Phys Rev B 85(15):155208

    Article  Google Scholar 

  68. Emery AA, Wolverton C (2017) High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites. Sci Data 4(1):170153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kojitani H, Navrotsky A, Akaogi M (2001) Calorimetric study of perovskite solid solutions in the CaSiO3–CaGeO3 system. Phys Chem Miner 28(6):413–420

    Article  CAS  Google Scholar 

  70. Beltrán A, Gracia L, Andrés J (2019) Polymorphs of ZnV2O6 under pressure: a first-principle investigation. J Phys Chem C 123(5):3239–3253

    Article  Google Scholar 

  71. Beltrán A, Gracia L, Andrés J, Longo E (2017) First-principles study on polymorphs of AgVO3: assessing to structural stabilities and pressure-induced transitions. J Phys Chem C 121(49):27624–27642

    Article  Google Scholar 

  72. Nagaraj B, Sawhney T, Perusse S, Aggarwal S, Ramesh R, Kaushik VS, Zafar S, Jones RE, Lee JH, Balu V, Lee J (1999) (Ba, Sr)TiO3 thin films with conducting perovskite electrodes for dynamic random access memory applications. Appl Phys Lett 74(21):3194–3196

    Article  CAS  Google Scholar 

  73. Kuroiwa T, Tsunemine Y, Horikawa T, Makita T, Tanimura J, Mikami N, Sato K (1994) Dielectric properties of (BaxSr1-x)TiO3 thin films prepared by RF sputtering for dynamic random access memory application. Jpn. J Appl Phys 33(Part 1, No. 9B):5187–5191

    Article  CAS  Google Scholar 

  74. Serraiocco J, Acikel B, Hansen P, Taylor T, Xu H, Speck JS, York RA (2002) Tunable passive integrated circuits using BST thin films. Integr Ferroelectr 49(1):161–170

    Article  CAS  Google Scholar 

  75. Ferrero M, Rérat M, Orlando R, Dovesi R (2008) The calculation of static polarizabilities of 1–3D periodic compounds the implementation in the crystal code. J Comput Chem 29(9):1450–1459

    Article  CAS  PubMed  Google Scholar 

  76. Ferrero M, Rérat M, Orlando R, Dovesi R (2008) Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects. J Chem Phys 128(1):014110

    Article  PubMed  Google Scholar 

  77. Ferrero M, Rérat M, Kirtman B, Dovesi R (2008) Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the CRYSTAL code. J Chem Phys 129(24):244110

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the following Brazilian research financing institutions for financial support: National Council for Scientific and Technological Development (CNPQ), Coordination for the Improvement of Higher Education Personnel (CAPES), the Goiás Research Foundation – FAPEG, the São Paulo Research Foundation—FAPESP (2013/07296-2), Graduate Program in Chemistry of Federal University of Catalão, Graduate Program in Materials Science and Engineering (PPGCEM-UFRN) and Federal University of São Carlos. M. C. Oliveira acknowledges the financial support from PNPD/CAPES (88887.319041/2019-00). The authors acknowledge the National Laboratory for Scientific Computing (LNCC) and High-Performance Computing Center (NACAD) of the Federal University of Rio de Janeiro (COPPE-UFRJ) for providing the computational resources of Lobo Carneiro supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Carvalho Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesquita, W.D., de Jesus, S.R., Oliveira, M.C. et al. Barium strontium titanate-based perovskite materials from DFT perspective: assessing the structural, electronic, vibrational, dielectric and energetic properties. Theor Chem Acc 140, 27 (2021). https://doi.org/10.1007/s00214-021-02723-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02723-2

Keywords

Navigation