Skip to main content
Log in

Treating nuclei in molecules with quantum mechanical respect

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

An examination is made of how nuclear motion ought to be considered in solutions to the eigenvalue problem for the full Coulomb Hamiltonian and the role played by the usual clamped-nuclei electronic Hamiltonian in the construction of such solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dirac PAM (1929) Proc R Soc Lond A123:714

    Google Scholar 

  2. Born M, Oppenheimer JR (1927) Ann der Phys 84:457

    Article  CAS  Google Scholar 

  3. Born M, Huang K (1955) Dynamical theory of crystal lattices, Appendix 8. Oxford University Press, Oxford

    Google Scholar 

  4. Sutcliffe BT (2014) J Math Chem 44:988. https://doi.org/10.1007/s10910-008-9358-7

    Article  CAS  Google Scholar 

  5. Jecko T, Sutcliffe BT, Woolley RG (2015) J Phys A Math Theor 48:445201. https://doi.org/10.1088/1751-8113/48/44/445201

    Article  Google Scholar 

  6. Sutcliffe BT (2000) Adv Chem Phys 114:1

    Google Scholar 

  7. Hagedorn G (1980) Commun Math Phys 77:1

    Article  Google Scholar 

  8. Sutcliffe BT (2010) Theor Chem Acc 127:121

    Article  CAS  Google Scholar 

  9. Pachuki K, Komasa J (2009) J Chem Phys 130:164113

    Article  Google Scholar 

  10. Henderson JR, Tennyson J, Sutcliffe BT (1993) J Chem Phys 98:7191

    Article  CAS  Google Scholar 

  11. Miller S, Tennyson J (1988) Chem Phys Lett 145:117

    Article  CAS  Google Scholar 

  12. Varga K, Suzuki Y, Usukura J (1998) Few-body Syst 24:81

    Article  CAS  Google Scholar 

  13. Hunter G (1975) Int J Quantum Chem 9:237

    Article  CAS  Google Scholar 

  14. Hunter G (1981) Int J Quantum Chem 19:755

    Article  CAS  Google Scholar 

  15. Gidopoulos NI, Gross EKU (2014) Philos Trans R Soc Lond A372:20130059

    Google Scholar 

  16. Cederbaum LS (2013) J Chem Phys 138:224110. https://doi.org/10.1063/1.4807115

    Article  CAS  PubMed  Google Scholar 

  17. Broekhove L, Lathouwers L, Van Leuven P (1991) J Math Chem 6:207

    Article  Google Scholar 

  18. Braams BJ, Bowman JM (2009) Int Rev Phys Chem 28:577

    Article  CAS  Google Scholar 

  19. Sutcliffe BT, Woolley RG (2005) Phys Chem Chem Phys 7:3664

    Article  CAS  Google Scholar 

  20. Nakai H (2007) Int J Quant Chem 107:2849

    Article  CAS  Google Scholar 

  21. Bubin S, Pavanello M, Tung W-C, Sharkey KL, Adamowicz L (2013) Chem Rev 113:36

    Article  CAS  Google Scholar 

  22. Thomas IL (1969) Phys Rev 185:90

    Article  CAS  Google Scholar 

  23. Thomas IL (1969) Chem Phys Lett 3:705

    Article  CAS  Google Scholar 

  24. Thomas IL (1970) Phys Rev A 2:1675

    Article  Google Scholar 

  25. Thomas IL (1971) Phys Rev A 3:565

    Article  Google Scholar 

  26. Thomas IL (1971) Phys Rev A 4:2120

    Article  Google Scholar 

  27. Thomas IL (1972) Phys Rev A 5:1104

    Article  Google Scholar 

  28. Thomas IL, Joy H (1970) Phys Rev A 2:1200

    Article  Google Scholar 

  29. Pettitt BA (1986) Chem Phys Lett 130:399

    Article  CAS  Google Scholar 

  30. Pettitt BA, Dancura W (1987) J Phys B 20:1899

    Article  CAS  Google Scholar 

  31. Almström H (1973) Lett Nuovo Cimento 8:983

    Article  Google Scholar 

  32. Almström H (1975) Il Nuovo Cimento 26B:279

    Article  Google Scholar 

  33. Woolley RG (1976) Adv Phys 25:27

    Article  CAS  Google Scholar 

  34. Essen H (1977) Int J Quant Chem 12:721

    Article  CAS  Google Scholar 

  35. Monkhorst HJ (1987) Phys Rev A 36:1544

    Article  CAS  Google Scholar 

  36. Kozlowski PM, Adamowicz L (1991) J Chem Phys 95:6681

    Article  CAS  Google Scholar 

  37. Tachikawa M, Mori K, Nakai H, Iguchi K (1998) Chem Phys Lett 290:437

    Article  CAS  Google Scholar 

  38. Sibaev M, Polyak I, Manby FR, Knowles P (2020) J Chem Phys 153:124102. https://doi.org/10.1063/5.0018930

    Article  CAS  PubMed  Google Scholar 

  39. Sasmal S, Vendrell O (2020) J Chem Phys 153:154110. https://doi.org/10.1063/5.0028116

    Article  PubMed  Google Scholar 

  40. Matyus E (2018) Mol Phys 117:590

    Article  Google Scholar 

  41. Carbo-Dorca R (2018) J Math Sci Model 1:1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Sutcliffe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “Festschrift in honour of Prof. Ramon Carbó-Dorca”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutcliffe, B. Treating nuclei in molecules with quantum mechanical respect. Theor Chem Acc 140, 23 (2021). https://doi.org/10.1007/s00214-021-02722-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02722-3

Keywords

Navigation