Skip to main content
Log in

Electron nuclear dynamics with plane wave basis sets: complete theory and formalism

Theoretical Chemistry Accounts Aims and scope Submit manuscript

Cite this article

Abstract

Electron nuclear dynamics (END) is an ab initio quantum dynamics method that adopts a time-dependent, variational, direct, and non-adiabatic approach. The simplest-level (SL) END (SLEND) version employs a classical mechanics description for nuclei and a Thouless single-determinantal wave function for electrons. A higher-level END version, END/Kohn–Sham density functional theory, improves the electron correlation description of SLEND. While both versions can simulate various types of chemical reactions, they have difficulties to simulate scattering/capture of electrons to/from the continuum due to their reliance on localized Slater-type basis functions. To properly describe those processes, we formulate END with plane waves (PWs, END/PW), basis functions able to represent both bound and unbound electrons. As extra benefits, PWs also afford fast algorithms to simulate periodic systems, parametric independence from nuclear positions and momenta, and elimination of basis set linear dependencies and orthogonalization procedures. We obtain the END/PW formalism by extending the Thouless wave function and associated electron density to periodic systems, expressing the energy terms as functionals of the latter entities, and deriving the energy gradients with respect to nuclear and electronic variables. END/PW has a great potential to simulate electron processes in both periodic (crystal) and aperiodic (molecular) systems (the latter in a supercell approach). Following previous END studies, END/PW will be applied to electron scattering processes in proton cancer therapy reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Santoro S, Kalek M, Huang G, Himo F (2016) Acc Chem Res 49:1006

    Article  CAS  PubMed  Google Scholar 

  2. Zhang X, Chung LW, Wu YD (2016) Acc Chem Res 49:1302

    Article  CAS  PubMed  Google Scholar 

  3. Child MS (1974) Molecular collision theory. Academic Press Inc, New York

    Google Scholar 

  4. Lewars E (2003) Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics. Kluwer Academic Publishers, Dordretch

    Google Scholar 

  5. Marx D, Hutter J (2000) In: Grotendorst J (ed) Modern methods and algorithms of quantum theory. John von Neumann Institute for Computing, Julich

    Google Scholar 

  6. Car R, Parrinello M (1985) Phys Rev Lett 55:2471

    Article  CAS  PubMed  Google Scholar 

  7. Deumens E, Diz A, Longo R, Öhrn Y (1994) Rev Mod Phys 66:917

    Article  CAS  Google Scholar 

  8. Deumens E, Öhrn Y (2001) J Phys Chem A 105:2660

    Article  CAS  Google Scholar 

  9. Stopera C, Grimes TV, McLaurin PM, Privett A, Morales JA (2013) Adv Quantum Chem 66(3):113

    Article  CAS  Google Scholar 

  10. Hagelberg F (2014) Electron dynamics in molecular interactions: principles and applications. World Scientific, Singapore

    Book  Google Scholar 

  11. Morales JA, Maiti B, Yan Y, Tsereteli K, Laraque J, Addepalli S, Myers C (2005) Chem Phys Lett 414:405

    Article  CAS  Google Scholar 

  12. McLaurin PM, Merritt R, Dominguez JC, Teixeira ES, Morales JA (2019) Phys Chem Chem Phys 21:5006

    Article  CAS  PubMed  Google Scholar 

  13. Thouless DJ (1960) Nucl Phys 21:225

    Article  CAS  Google Scholar 

  14. Perera SA, McLaurin PM, Grimes TV, Morales JA (2010) Chem Phys Lett 496:188

    Article  CAS  Google Scholar 

  15. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  16. Longo R, Deumens E, Ohrn Y (1993) J Chem Phys 99:4554

    Article  CAS  Google Scholar 

  17. Jacquemin D, Morales JA, Deumens E, Ohrn Y (1997) J Chem Phys 107:6146

    Article  CAS  Google Scholar 

  18. Coutinho-Neto M, Deumens E, Öhrn Y (2000) Int J Quantum Chem 77:301

    Article  CAS  Google Scholar 

  19. Coutinho-Neto M, Deumens E, Öhrn Y (2002) J Chem Phys 116:2794

    Article  CAS  Google Scholar 

  20. Maiti B, Sadeghi R, Austin A, Morales JA (2007) Chem Phys 340:105

    Article  CAS  Google Scholar 

  21. Maiti B, McLaurin PM, Sadeghi R, Ajith Perera S, Morales JA (2009) Int J Quantum Chem 109:3026

    Article  CAS  Google Scholar 

  22. Guevara N, Teixeira E, Hall B, Öhrn Y, Deumens E, Sabin J (2009) Phys Rev A 80:062715

    Article  CAS  Google Scholar 

  23. Guevara N, Teixeira E, Hall B, Öhrn Y, Deumens E, Sabin J (2011) Phys Rev A 83:052709

    Article  CAS  Google Scholar 

  24. Stopera C, Maiti B, Grimes TV, McLaurin PM, Morales JA (2012) J Chem Phys 136:054304

    Article  CAS  PubMed  Google Scholar 

  25. Stopera C, Maiti B, Grimes TV, McLaurin PM, Morales JA (2011) J Chem Phys 134:224308

    Article  CAS  PubMed  Google Scholar 

  26. Stopera C, Maiti B, Morales JA (2012) Chem Phys Lett 551:42

    Article  CAS  Google Scholar 

  27. Hagelberg F, Deumens E (2002) Phys Rev A 65:052505

    Article  CAS  Google Scholar 

  28. Broeckhove J, CoutinhoNeto MD, Deumens E, Ohrn Y (1997) Phys Rev A 56:4996

    Article  CAS  Google Scholar 

  29. Masiello D, Deumens E, Ohrn Y (2005) Phys Rev A 71:032108

    Article  CAS  Google Scholar 

  30. Masiello D, Deumens E, Ohrn Y (2005) Adv Quantum Chem 49:249

    Article  Google Scholar 

  31. Teixeira E, Uppulury K, Privett A, Stopera C, McLaurin PM, Morales JA (2018) Cancers 10:136

    Article  PubMed Central  CAS  Google Scholar 

  32. McLaurin PM, Privett A, Stopera C, Grimes TV, Perera A, Morales JA (2015) Mol Phys 113:297

    Article  CAS  Google Scholar 

  33. Privett A, Teixeira ES, Stopera C, Morales JA (2017) PLoS One 12:e0174456

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Privett A, Morales JA (2014) Chem Phys Lett 603:82

    Article  CAS  Google Scholar 

  35. Solovyov AV, Surdutovich E, Scifoni E, Mishustin I, Greiner W (2009) Phys Rev E 79:011909

    Article  CAS  Google Scholar 

  36. Szabo A, Ostlund NS (1989) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover Publications Inc, Mineola, NY

    Google Scholar 

  37. Langhoff PW, Winstead CL (2005) Int J Quant Chem 102:948

    Article  CAS  Google Scholar 

  38. Kumar A, Sevilla MDS (2012) J Leszcynski (ed.) Handbook of computational chemistry, Springer, Heidelberg, p 12

  39. Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  40. Kohanoff J (2006) Electronic structure calculations for solid and molecules. Cambridge University Prerss, Cambridge

    Book  Google Scholar 

  41. Kramer P, Saraceno M (1981) Geometry of the time-dependent variational principle in quantum mechanics. Springer, New York

    Book  Google Scholar 

  42. Delos JB (1981) Rev Mod Phys 53:287

    Article  CAS  Google Scholar 

  43. Longo R, Diz A, Deumens E, Öhrn Y (1994) Chem Phys Lett 220:305

    Article  CAS  Google Scholar 

  44. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  45. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439

    Article  CAS  Google Scholar 

  46. Klauder JR, Skagerstam B-S (1985) Coherent states: applications in physics and mathematical physics. World Scientific, Singapore

    Book  Google Scholar 

  47. Morales JA (2010) Mol Phys 108:3199

    Article  CAS  Google Scholar 

  48. Morales JA, Deumens E, Ohrn Y (1999) J Math Phys 40:766

    Article  CAS  Google Scholar 

  49. Morales JA (2009) J Phys Chem A 113:6004

    Article  CAS  PubMed  Google Scholar 

  50. Deumens E, Öhrn Y, Weiner B (1991) J Math Phys 32:1166

    Article  Google Scholar 

  51. Grimes TV, Teixeira E, Morales JA, PACE: Python-Accelerated Coherent states Electron-nuclear dynamics, User’s and Programmer’s Manual, Version 1.0, Texas Tech University, 2010–2019

  52. Flocke N, Lotrich V (2008) J Comput Chem 29:2722

    Article  CAS  PubMed  Google Scholar 

  53. Lotrich V, Flocke N, Ponton M, Yau AD, Perera A, Deumens E, Bartlett RJ (2008) J Chem Phys 128:194104

    Article  CAS  PubMed  Google Scholar 

  54. Krauss M, Stevens WJ (1984) Annu Rev Phys Chem 35:357

    Article  CAS  Google Scholar 

  55. Carsky P, Curik R, Varga S (2012) J Chem Phys 136:114105

    Article  PubMed  CAS  Google Scholar 

  56. Fusti-Molnar L, Pulay P (2002) J Chem Phys 116:7795

    Article  CAS  Google Scholar 

  57. Blaha P, Scwarz K, Madsen G, Kvasnicka D, Luit J (2001) WIEN2k, an augmented plane wave local orbital program for calculating crystal properties. Vienna Univeristy of Technology, Vienna

    Google Scholar 

  58. Kresse G, Furthmuller J (1996) Phys Rev B 56:11169

    Article  Google Scholar 

  59. Gygi F, Yates R, Lorenz J, Draeger EW, Franchetti F, Ueberhuber C, de Supinski B, S. Kral, Gunnels J, Sexton J (2005) Conference on supercomputing (IEEE Computer Society), p 24

  60. McWeeny R (1992) Methods of molecular quantum mechanics. Academic Press, London

    Google Scholar 

  61. Kleinman L, Bylander DM (1980) Phys Rev Lett 48:1425

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Adelia Aquino for her kind invitation to submit this manuscript to the special issue of Theoretical Chemical Accounts in honor of Prof. Fernando Rei Ornellas. The authors thank Dr. Alfredo Correa (Livermore National Laboratory) and Prof. Stefan Estreicher (Department of Physics at Texas Tech University) for useful discussions about PWs in electronic structure theory and chemical dynamics. E. S. T. acknowledges past financial support of his postdoctoral research from the Science without Borders program of the National Council for Scientific and Technological Development (CNPq) of Brazil. This material is based upon work partially supported by the current grant 1R15GM128149-01 from the National Institutes of Health (NIH) to J. A. M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Morales.

Additional information

Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho and Francisco Bolivar Correto Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Gradients of the END/PW density matrix \(\varGamma_{ij}^{\left( \varvec{kk} \right)} \left( {z^{*} ,z} \right)\) with respect to the electronic Thouless parameters \(z_{\text{ph}}^{\left( \varvec{k} \right)}\), \(\partial \varGamma_{ij}^{\left( \varvec{kk} \right)} \left( {z^{*} ,z} \right) /\partial z_{\text{ph}}^{\left( k \right)}\)

Appendix A: Gradients of the END/PW density matrix \(\varGamma_{ij}^{\left( \varvec{kk} \right)} \left( {z^{*} ,z} \right)\) with respect to the electronic Thouless parameters \(z_{\text{ph}}^{\left( \varvec{k} \right)}\), \(\partial \varGamma_{ij}^{\left( \varvec{kk} \right)} \left( {z^{*} ,z} \right) /\partial z_{\text{ph}}^{\left( k \right)}\)

To obtain the \(\partial \varGamma_{ij}^{{\left( \varvec{kk} \right)}} \left( {\varvec{z}^{*} ,\varvec{z}} \right) /\partial z_{\text{ph}}^{{\left( \varvec{k} \right)}}\) gradients, the one-electron density matrix \(\varGamma_{ij}^{{\left( \varvec{kk} \right)}} \left( {\varvec{z}^{*} ,\varvec{z}} \right)\) in Eq. (29) is first differentiated with respect to \(z_{\text{ph}}^{{\left( \varvec{k} \right)}}\)

$$\begin{aligned} \frac{{\partial \varGamma_{ij}^{{\left( {\varvec{kk}} \right)}} \left( {\varvec{z}^{*} ,\varvec{z}} \right)}}{{\partial z_{\text{ph}}^{{\left( \varvec{k} \right)}} }} & = \mathop \sum \limits_{{l,l^{{\prime }} = 1}}^{{N_{\varvec{k}} , N_{\varvec{k}} }} \frac{{\partial \left( {\begin{array}{*{20}c} {I^{{\left( \varvec{k} \right) \bullet }} } \\ {z^{{\left( \varvec{k} \right)}} } \\ \end{array} } \right)_{il} }}{{\partial z_{\text{ph}}^{{\left( \varvec{k} \right)}} }}\left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{{ll^{{\prime }} }} \left( {\begin{array}{*{20}c} {I^{{\left( \varvec{k} \right) \bullet }} } & {z^{{\left( \varvec{k} \right)\dag }} } \\ \end{array} } \right)_{{l^{{\prime }} j}} \\ & \quad + \,\mathop \sum \limits_{{l,l^{\prime} = 1}}^{{N_{\varvec{k}} , N_{\varvec{k}} }} \left( {\begin{array}{*{20}c} {I^{{\left( \varvec{k} \right) \bullet }} } \\ {z^{{\left( \varvec{k} \right)}} } \\ \end{array} } \right)_{il} \frac{{\partial \left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{{ll^{{\prime }} }} }}{{\partial z_{\text{ph}}^{{\left( \varvec{k} \right)}} }}\left( {\begin{array}{*{20}c} {I^{{\left( \varvec{k} \right) \bullet }} } & {z^{{\left( \varvec{k} \right)\dag }} } \\ \end{array} } \right)_{{l^{{\prime }} j}} \\ \end{aligned}$$
(60)

where all the matrices in the above equation are defined just after Eq. (25). In order to obtain an expression appropriate for coding, it is necessary to apply the following matrix relationships [7]:

$$\frac{{\partial A_{bc} }}{{\partial A_{de} }} = \delta_{bd} \delta_{ec} ;\quad \frac{{\partial X\left( x \right)^{ - 1} }}{\partial x} = - X\left( x \right)^{ - 1} \frac{\partial X\left( x \right)}{\partial x}X\left( x \right)^{ - 1}$$
(61)

where \(A\) and \(X\left( x \right)\) are matrices and \(x\) is a variable. By applying these relationships to the derivative matrix terms in the first sum of Eq. (60), one obtains

$$\frac{{\partial \left( {\begin{array}{*{20}c} {I^{{\left( \varvec{k} \right) \bullet }} } \\ {z^{{\left( \varvec{k} \right)}} } \\ \end{array} } \right)_{il} }}{{\partial z_{\text{ph}}^{{\left( \varvec{k} \right)}} }} = \delta_{ip}^{{\left( \varvec{k} \right)}} \delta_{hl}^{{\left( \varvec{k} \right)}} \quad {\text{with}}\;\; \delta_{ip}^{{\left( \varvec{k} \right)}} = \left( {\begin{array}{*{20}c} {0^{{\left( \varvec{k} \right)}} } \\ {I^{{\left( \varvec{k} \right) \circ }} } \\ \end{array} } \right)_{ip} \;\;{\text{and}}\;\;\delta_{hl}^{{\left( \varvec{k} \right)}} = I^{{\left( \varvec{k} \right) \bullet }}_{hl}$$
(62)

By doing the same on the more complex derivate matrix terms in the second sum of Eq. (60), one obtains

$$\begin{aligned} & \frac{{\partial \left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{{ll^{{\prime }} }} }}{{\partial z_{\text{ph}}^{{\left( \varvec{k} \right)}} }} \\ & \quad = \mathop \sum \limits_{a,b = 1}^{{N_{\varvec{k}} ,N_{\varvec{k}} }} - \left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{la} \frac{{\partial \left[ {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right]_{ab} }}{{\partial z_{\text{ph}}^{{\left( \varvec{k} \right)}} }}\left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{{bl^{{\prime }} }} \\ & \quad = \mathop \sum \limits_{a,b = 1}^{{N_{\varvec{k}} , N_{\varvec{k}} }} - \left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{la} \left[ {\frac{{\partial \left[ {I^{{\left( \varvec{k} \right) \bullet }} } \right]_{ab} }}{{\partial z_{\text{ph}}^{{\left( \varvec{k} \right)}} }} + \frac{{\partial \left[ {z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right]_{ab} }}{{\partial z_{\text{ph}}^{{\left( \varvec{k} \right)}} }}} \right] \times \left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{{bl^{{\prime }} }} \\ & \quad = \mathop \sum \limits_{a,b = 1}^{{N_{\varvec{k}} ,N_{\varvec{k}} }} - \left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{la} \left[ {\frac{{\partial \left( {\mathop \sum \nolimits_{{q = N_{\varvec{k}} + 1}}^{{K_{\varvec{k}} }} \left( {z^{{\left( \varvec{k} \right)\dag }} } \right)_{aq} z_{qb}^{{\left( \varvec{k} \right)}} } \right)}}{{\partial z_{\text{ph}}^{{\left( \varvec{k} \right)}} }}} \right]\left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{{bl^{{\prime }} }} \\ & \quad = \mathop \sum \limits_{a,b = 1}^{{N_{\varvec{k}} ,N_{\varvec{k}} }} - \left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{la} \left\{ {\mathop \sum \limits_{q = 1}^{{K_{\varvec{k}} }} \left[ {\frac{{\partial \left( {z^{{\left( \varvec{k} \right)\dag }} } \right)_{aq} }}{{\partial z_{\text{ph}}^{{\left( \varvec{k} \right)}} }} \cdot z_{qb}^{{\left( \varvec{k} \right)}} + \left( {z^{{\left( \varvec{k} \right)\dag }} } \right)_{aq} \frac{{\partial \left( {z_{qb}^{{\left( \varvec{k} \right)}} } \right)}}{{\partial z_{ph}^{{\left( \varvec{k} \right)}} }}} \right]} \right\} \times \left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{{bl^{{\prime }} }} \\ & \quad = \mathop \sum \limits_{a,b = 1}^{{N_{\varvec{k}} ,N_{\varvec{k}} }} - \left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{la} \left\{ {\mathop \sum \limits_{q = 1}^{{K_{\varvec{k}} }} \left[ {\left( {z^{{\left( \varvec{k} \right)\dag }} } \right)_{aq} \delta_{qp}^{{\left( \varvec{k} \right)}} \delta_{hb}^{{\left( \varvec{k} \right)}} } \right]} \right\} \times \left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{{bl^{{\prime }} }} \\ & \quad = \mathop \sum \limits_{a,b = 1}^{{N_{\varvec{k}} ,N_{\varvec{k}} }} - \left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{la} \left[ {\left( {z^{{\left( \varvec{k} \right)\dag }} } \right)_{ap} \cdot \delta_{hb}^{{\left( \varvec{k} \right)}} } \right]\left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{{bl^{{\prime }} }} \\ & \quad = - \left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} I^{ \bullet } + z^{\dag } z} \right)^{ - 1} z^{{\left( \varvec{k} \right)\dag }} } \right]_{lp} \left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{{hl^{{\prime }} }} \\ \end{aligned}$$
(63)

By setting Eqs. (62) and (63) into Eq. (60), one obtains

$$\begin{aligned} & \frac{{\partial \varGamma_{ij}^{{\left( {kk} \right)}} \left( {z^{*} ,z} \right)}}{{\partial z_{\text{ph}}^{\left( k \right)} }} \\ & \quad = \mathop \sum \limits_{{l,l^{\prime } = 1}}^{{N_{k} ,N_{k} }} \left( {\begin{array}{*{20}c} {0^{\left( k \right) \circ } } \\ {I^{\left( k \right) \circ } } \\ \end{array} } \right)_{ip} I^{\left( k \right) \bullet }_{hl} \left[ {\left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} } \right]_{{ll^{\prime } }} \left( {\begin{array}{*{20}c} {I^{\left( k \right) \bullet } } & {z^{\left( k \right)\dag } } \\ \end{array} } \right)_{{l^{\prime } j}} \\ & \quad \quad - \,\mathop \sum \limits_{{l,l^{\prime } = 1}}^{{N_{k} ,N_{k} }} \left( {\begin{array}{*{20}c} {I^{\left( k \right) \bullet } } \\ {z^{\left( k \right)} } \\ \end{array} } \right)_{il} \left[ {\left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} z^{\left( k \right)\dag } } \right]_{lp} \times \left[ {\left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} } \right]_{{hl^{\prime } }} \left( {\begin{array}{*{20}c} {I^{\left( k \right) \bullet } } & {z^{\left( k \right)\dag } } \\ \end{array} } \right)_{{l^{\prime } j}} \\ & \quad = \mathop \sum \limits_{l = 1}^{{N_{k} }} \left( {\begin{array}{*{20}c} {0^{\left( k \right) \circ } } \\ {I^{\left( k \right) \circ } } \\ \end{array} } \right)_{ip} \left[ {\left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} } \right]_{hl} \left( {\begin{array}{*{20}c} {I^{\left( k \right) \bullet } } & {z^{\left( k \right)\dag } } \\ \end{array} } \right)_{lj} \\ & \quad \quad - \left[ {\left( {\begin{array}{*{20}c} {I^{\left( k \right) \bullet } } \\ {z^{\left( k \right)} } \\ \end{array} } \right)\left[ {\left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} z^{\left( k \right)\dag } } \right]} \right]_{ip} \left[ {\left[ {\left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} } \right]\left( {\begin{array}{*{20}c} {I^{\left( k \right) \bullet } } & {z^{\left( k \right)\dag } } \\ \end{array} } \right)} \right]_{hj} \\ & \quad = \left( {\begin{array}{*{20}c} {0^{\left( k \right) \circ } } \\ {I^{\left( k \right) \circ } } \\ \end{array} } \right)_{ip} \left[ {\left[ {\left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} } \right]\left( {\begin{array}{*{20}c} {I^{\left( k \right) \bullet } } & {z^{\left( k \right)\dag } } \\ \end{array} } \right)} \right]_{hj} \\ & \quad \quad - \,\left[ {\left( {\begin{array}{*{20}c} {I^{\left( k \right) \bullet } } \\ {z^{\left( k \right)} } \\ \end{array} } \right)\left[ {\left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} z^{\left( k \right)\dag } } \right]} \right]_{ip} \left[ {\left[ {\left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} } \right]\left( {\begin{array}{*{20}c} {I^{\left( k \right) \bullet } } & {z^{\left( k \right)\dag } } \\ \end{array} } \right)} \right]_{hj} \\ & \quad = \left[ {\left( {\begin{array}{*{20}c} {0^{\left( k \right) \circ } } \\ {I^{\left( k \right) \circ } } \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {I^{\left( k \right) \bullet } } \\ {z^{\left( k \right)} } \\ \end{array} } \right)\left[ {\left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} z^{\left( k \right)\dag } } \right]} \right]_{ip} \\ & \quad \quad \times \,\left[ {\left[ {\left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} } \right]\left( {\left( {\begin{array}{*{20}c} {I^{\left( k \right) \bullet } } & {z^{\left( k \right)\dag } } \\ \end{array} } \right)} \right)} \right]_{hj} \\ & \quad = \left[ {\left( {\begin{array}{*{20}c} {0^{\left( k \right) \circ } } \\ {I^{\left( k \right) \circ } } \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {\left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} z^{\left( k \right)\dag } } \\ {z^{\left( k \right)} \left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} z^{\left( k \right)\dag } } \\ \end{array} } \right)} \right]_{ip} \\ & \quad \quad \times \,\left[ {\left[ {\left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} } \right]\left( {\begin{array}{*{20}c} {I^{\left( k \right) \bullet } } & {z^{\left( k \right)\dag } } \\ \end{array} } \right)} \right]_{hj} \\ & \quad = \left( {\begin{array}{*{20}c} { - \left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} z^{\left( k \right)\dag } } \\ {I^{\left( k \right) \circ } - z^{\left( k \right)} \left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} z^{\left( k \right)\dag } } \\ \end{array} } \right)_{ip} \\ & \quad \quad \times \,\left[ {\left[ {\left( {I^{\left( k \right) \bullet } + z^{\left( k \right)\dag } z^{\left( k \right)} } \right)^{ - 1} } \right]\left( {\begin{array}{*{20}c} {I^{\left( k \right) \bullet } } & {z^{\left( k \right)\dag } } \\ \end{array} } \right)} \right]_{hj} \\ \end{aligned}$$
(64)

The matrix of the first element in the last line satisfies the identity (cf. Eq. 2.28 of Ref. [7])

$$\left( {\begin{array}{*{20}c} { - \,z^{{\left( \varvec{k} \right)\dag }} \left( {I^{{\left( \varvec{k} \right) \circ }} + z^{{\left( \varvec{k} \right)}} z^{{\left( \varvec{k} \right)\dag }} } \right)^{ - 1} } \\ {\left( {I^{{\left( \varvec{k} \right) \circ }} + z^{{\left( \varvec{k} \right)}} z^{{\left( \varvec{k} \right)\dag }} } \right)^{ - 1} } \\ \end{array} } \right) = \left[ {\left( {\begin{array}{*{20}c} { - z^{{\left( \varvec{k} \right)\dag }} } \\ {I^{{\left( \varvec{k} \right) \circ }} } \\ \end{array} } \right)\left( {I^{{\left( \varvec{k} \right) \circ }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]$$
(65)

By setting the above identity into Eq. (64), one finally obtains

$$\begin{aligned} & \frac{{\partial \varGamma_{ij}^{{\left( {\varvec{kk}} \right)}} \left( {\varvec{z}^{*} ,\varvec{z}} \right)}}{{\partial z_{\text{ph}}^{{\left( \varvec{k} \right)}} }} \\ & \quad = \left( {\begin{array}{*{20}c} { - \,z^{{\left( \varvec{k} \right)\dag }} \left( {I^{{\left( \varvec{k} \right) \circ }} + z^{{\left( \varvec{k} \right)}} z^{{\left( \varvec{k} \right)\dag }} } \right)^{ - 1} } \\ {\left( {I^{{\left( \varvec{k} \right) \circ }} + z^{{\left( \varvec{k} \right)}} z^{{\left( \varvec{k} \right)\dag }} } \right)^{ - 1} } \\ \end{array} } \right)_{ip} \left[ {\left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]\left( {\begin{array}{*{20}c} {I^{{\left( \varvec{k} \right) \bullet }} } & {z^{{\left( \varvec{k} \right)\dag }} } \\ \end{array} } \right)} \right]_{hj} \\ & \quad = \left[ {\left( {\begin{array}{*{20}c} { - z^{{\left( \varvec{k} \right)\dag }} } \\ {I^{{\left( \varvec{k} \right) \circ }} } \\ \end{array} } \right)\left( {I^{{\left( \varvec{k} \right) \circ }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]_{ip} \left[ {\left[ {\left( {I^{{\left( \varvec{k} \right) \bullet }} + z^{{\left( \varvec{k} \right)\dag }} z^{{\left( \varvec{k} \right)}} } \right)^{ - 1} } \right]\left( {\begin{array}{*{20}c} {I^{{\left( \varvec{k} \right) \bullet }} } & {z^{{\left( \varvec{k} \right)\dag }} } \\ \end{array} } \right)} \right]_{hj} \\ \end{aligned}$$
(66)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, E.S., Morales, J.A. Electron nuclear dynamics with plane wave basis sets: complete theory and formalism. Theor Chem Acc 139, 73 (2020). https://doi.org/10.1007/s00214-020-2578-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-2578-z

Keywords

Navigation