Abstract
Electron nuclear dynamics (END) is an ab initio quantum dynamics method that adopts a time-dependent, variational, direct, and non-adiabatic approach. The simplest-level (SL) END (SLEND) version employs a classical mechanics description for nuclei and a Thouless single-determinantal wave function for electrons. A higher-level END version, END/Kohn–Sham density functional theory, improves the electron correlation description of SLEND. While both versions can simulate various types of chemical reactions, they have difficulties to simulate scattering/capture of electrons to/from the continuum due to their reliance on localized Slater-type basis functions. To properly describe those processes, we formulate END with plane waves (PWs, END/PW), basis functions able to represent both bound and unbound electrons. As extra benefits, PWs also afford fast algorithms to simulate periodic systems, parametric independence from nuclear positions and momenta, and elimination of basis set linear dependencies and orthogonalization procedures. We obtain the END/PW formalism by extending the Thouless wave function and associated electron density to periodic systems, expressing the energy terms as functionals of the latter entities, and deriving the energy gradients with respect to nuclear and electronic variables. END/PW has a great potential to simulate electron processes in both periodic (crystal) and aperiodic (molecular) systems (the latter in a supercell approach). Following previous END studies, END/PW will be applied to electron scattering processes in proton cancer therapy reactions.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Santoro S, Kalek M, Huang G, Himo F (2016) Acc Chem Res 49:1006
Zhang X, Chung LW, Wu YD (2016) Acc Chem Res 49:1302
Child MS (1974) Molecular collision theory. Academic Press Inc, New York
Lewars E (2003) Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics. Kluwer Academic Publishers, Dordretch
Marx D, Hutter J (2000) In: Grotendorst J (ed) Modern methods and algorithms of quantum theory. John von Neumann Institute for Computing, Julich
Car R, Parrinello M (1985) Phys Rev Lett 55:2471
Deumens E, Diz A, Longo R, Öhrn Y (1994) Rev Mod Phys 66:917
Deumens E, Öhrn Y (2001) J Phys Chem A 105:2660
Stopera C, Grimes TV, McLaurin PM, Privett A, Morales JA (2013) Adv Quantum Chem 66(3):113
Hagelberg F (2014) Electron dynamics in molecular interactions: principles and applications. World Scientific, Singapore
Morales JA, Maiti B, Yan Y, Tsereteli K, Laraque J, Addepalli S, Myers C (2005) Chem Phys Lett 414:405
McLaurin PM, Merritt R, Dominguez JC, Teixeira ES, Morales JA (2019) Phys Chem Chem Phys 21:5006
Thouless DJ (1960) Nucl Phys 21:225
Perera SA, McLaurin PM, Grimes TV, Morales JA (2010) Chem Phys Lett 496:188
Kohn W, Sham LJ (1965) Phys Rev 140:A1133
Longo R, Deumens E, Ohrn Y (1993) J Chem Phys 99:4554
Jacquemin D, Morales JA, Deumens E, Ohrn Y (1997) J Chem Phys 107:6146
Coutinho-Neto M, Deumens E, Öhrn Y (2000) Int J Quantum Chem 77:301
Coutinho-Neto M, Deumens E, Öhrn Y (2002) J Chem Phys 116:2794
Maiti B, Sadeghi R, Austin A, Morales JA (2007) Chem Phys 340:105
Maiti B, McLaurin PM, Sadeghi R, Ajith Perera S, Morales JA (2009) Int J Quantum Chem 109:3026
Guevara N, Teixeira E, Hall B, Öhrn Y, Deumens E, Sabin J (2009) Phys Rev A 80:062715
Guevara N, Teixeira E, Hall B, Öhrn Y, Deumens E, Sabin J (2011) Phys Rev A 83:052709
Stopera C, Maiti B, Grimes TV, McLaurin PM, Morales JA (2012) J Chem Phys 136:054304
Stopera C, Maiti B, Grimes TV, McLaurin PM, Morales JA (2011) J Chem Phys 134:224308
Stopera C, Maiti B, Morales JA (2012) Chem Phys Lett 551:42
Hagelberg F, Deumens E (2002) Phys Rev A 65:052505
Broeckhove J, CoutinhoNeto MD, Deumens E, Ohrn Y (1997) Phys Rev A 56:4996
Masiello D, Deumens E, Ohrn Y (2005) Phys Rev A 71:032108
Masiello D, Deumens E, Ohrn Y (2005) Adv Quantum Chem 49:249
Teixeira E, Uppulury K, Privett A, Stopera C, McLaurin PM, Morales JA (2018) Cancers 10:136
McLaurin PM, Privett A, Stopera C, Grimes TV, Perera A, Morales JA (2015) Mol Phys 113:297
Privett A, Teixeira ES, Stopera C, Morales JA (2017) PLoS One 12:e0174456
Privett A, Morales JA (2014) Chem Phys Lett 603:82
Solovyov AV, Surdutovich E, Scifoni E, Mishustin I, Greiner W (2009) Phys Rev E 79:011909
Szabo A, Ostlund NS (1989) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover Publications Inc, Mineola, NY
Langhoff PW, Winstead CL (2005) Int J Quant Chem 102:948
Kumar A, Sevilla MDS (2012) J Leszcynski (ed.) Handbook of computational chemistry, Springer, Heidelberg, p 12
Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge
Kohanoff J (2006) Electronic structure calculations for solid and molecules. Cambridge University Prerss, Cambridge
Kramer P, Saraceno M (1981) Geometry of the time-dependent variational principle in quantum mechanics. Springer, New York
Delos JB (1981) Rev Mod Phys 53:287
Longo R, Diz A, Deumens E, Öhrn Y (1994) Chem Phys Lett 220:305
Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York
Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439
Klauder JR, Skagerstam B-S (1985) Coherent states: applications in physics and mathematical physics. World Scientific, Singapore
Morales JA (2010) Mol Phys 108:3199
Morales JA, Deumens E, Ohrn Y (1999) J Math Phys 40:766
Morales JA (2009) J Phys Chem A 113:6004
Deumens E, Öhrn Y, Weiner B (1991) J Math Phys 32:1166
Grimes TV, Teixeira E, Morales JA, PACE: Python-Accelerated Coherent states Electron-nuclear dynamics, User’s and Programmer’s Manual, Version 1.0, Texas Tech University, 2010–2019
Flocke N, Lotrich V (2008) J Comput Chem 29:2722
Lotrich V, Flocke N, Ponton M, Yau AD, Perera A, Deumens E, Bartlett RJ (2008) J Chem Phys 128:194104
Krauss M, Stevens WJ (1984) Annu Rev Phys Chem 35:357
Carsky P, Curik R, Varga S (2012) J Chem Phys 136:114105
Fusti-Molnar L, Pulay P (2002) J Chem Phys 116:7795
Blaha P, Scwarz K, Madsen G, Kvasnicka D, Luit J (2001) WIEN2k, an augmented plane wave local orbital program for calculating crystal properties. Vienna Univeristy of Technology, Vienna
Kresse G, Furthmuller J (1996) Phys Rev B 56:11169
Gygi F, Yates R, Lorenz J, Draeger EW, Franchetti F, Ueberhuber C, de Supinski B, S. Kral, Gunnels J, Sexton J (2005) Conference on supercomputing (IEEE Computer Society), p 24
McWeeny R (1992) Methods of molecular quantum mechanics. Academic Press, London
Kleinman L, Bylander DM (1980) Phys Rev Lett 48:1425
Acknowledgements
The authors thank Prof. Adelia Aquino for her kind invitation to submit this manuscript to the special issue of Theoretical Chemical Accounts in honor of Prof. Fernando Rei Ornellas. The authors thank Dr. Alfredo Correa (Livermore National Laboratory) and Prof. Stefan Estreicher (Department of Physics at Texas Tech University) for useful discussions about PWs in electronic structure theory and chemical dynamics. E. S. T. acknowledges past financial support of his postdoctoral research from the Science without Borders program of the National Council for Scientific and Technological Development (CNPq) of Brazil. This material is based upon work partially supported by the current grant 1R15GM128149-01 from the National Institutes of Health (NIH) to J. A. M.
Author information
Authors and Affiliations
Corresponding author
Additional information
Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho and Francisco Bolivar Correto Machado.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A: Gradients of the END/PW density matrix \(\varGamma_{ij}^{\left( \varvec{kk} \right)} \left( {z^{*} ,z} \right)\) with respect to the electronic Thouless parameters \(z_{\text{ph}}^{\left( \varvec{k} \right)}\), \(\partial \varGamma_{ij}^{\left( \varvec{kk} \right)} \left( {z^{*} ,z} \right) /\partial z_{\text{ph}}^{\left( k \right)}\)
Appendix A: Gradients of the END/PW density matrix \(\varGamma_{ij}^{\left( \varvec{kk} \right)} \left( {z^{*} ,z} \right)\) with respect to the electronic Thouless parameters \(z_{\text{ph}}^{\left( \varvec{k} \right)}\), \(\partial \varGamma_{ij}^{\left( \varvec{kk} \right)} \left( {z^{*} ,z} \right) /\partial z_{\text{ph}}^{\left( k \right)}\)
To obtain the \(\partial \varGamma_{ij}^{{\left( \varvec{kk} \right)}} \left( {\varvec{z}^{*} ,\varvec{z}} \right) /\partial z_{\text{ph}}^{{\left( \varvec{k} \right)}}\) gradients, the one-electron density matrix \(\varGamma_{ij}^{{\left( \varvec{kk} \right)}} \left( {\varvec{z}^{*} ,\varvec{z}} \right)\) in Eq. (29) is first differentiated with respect to \(z_{\text{ph}}^{{\left( \varvec{k} \right)}}\)
where all the matrices in the above equation are defined just after Eq. (25). In order to obtain an expression appropriate for coding, it is necessary to apply the following matrix relationships [7]:
where \(A\) and \(X\left( x \right)\) are matrices and \(x\) is a variable. By applying these relationships to the derivative matrix terms in the first sum of Eq. (60), one obtains
By doing the same on the more complex derivate matrix terms in the second sum of Eq. (60), one obtains
By setting Eqs. (62) and (63) into Eq. (60), one obtains
The matrix of the first element in the last line satisfies the identity (cf. Eq. 2.28 of Ref. [7])
By setting the above identity into Eq. (64), one finally obtains
Rights and permissions
About this article
Cite this article
Teixeira, E.S., Morales, J.A. Electron nuclear dynamics with plane wave basis sets: complete theory and formalism. Theor Chem Acc 139, 73 (2020). https://doi.org/10.1007/s00214-020-2578-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00214-020-2578-z