Skip to main content

Advertisement

Log in

Theoretical design and rotational conformation analysis of molecular bevel gear with triptycene as rotator

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A molecular bevel gear with triptycene as the rotator and naphtha[2,1,8-def]isoquinoline as the stator was designed, and the rotational process and conformational transformation of the gear were calculated and analyzed by density functional theory. To be specific, the rotational potential energy surface was investigated via scanning the dihedral angle θ (H71‒N67‒C1‒C5). The geometry optimization was performed at the M06-2X level in conjunction with def-TZVP basis set. According to the correlation between the two rotors, the rotation mode of gear can be defined as gear rotation and gear slippage. And the rotational energy barrier indicated that the gear rotation was easier than gear slippage. For transition-state and ground-state structures, the single-point energy and thermodynamic correction were calculated at M06-2X/def2-TZVP levels. The C2 conformations in ground state achieved its stable structure owing to intramolecular hydrogen bonding, C‒H···π, and π···π stacking interactions. In order to gain insight into the intramolecular interaction, the noncovalent interactions based on the reduced density gradient method and Bader’s atoms in molecules theory were analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tseng T, Lu HF, Kao CY, Chiu CW, Chao I, Prabhakar C, Yang JS (2017) Redox-gated tristable molecular brakes of geared rotation. J Org Chem 82(10):5354–5366

    CAS  PubMed  Google Scholar 

  2. Kay ER, Leigh DA, Zerbetto F (2007) Synthetic molecular motors and mechanical machines. Angew Chem Int Ed 46(1–2):72–191

    CAS  Google Scholar 

  3. Ballardini R, Balzani V, Credi A, Gandolfi MT, Venturi M (2001) Artificial molecular-level machines: which energy to make them work? Acc Chem Res 34:445

    CAS  PubMed  Google Scholar 

  4. Zheng YB, Hao QZ, Yang YW, Kiraly B, Chiang IK, Huang TJ (2010) Light-driven artificial molecular machines. J Nanophoton 4:042501

    Google Scholar 

  5. Sauvage JP (1998) Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc Chem Res 31:611

    CAS  Google Scholar 

  6. Blanco V, Leigh DA, Marcos V, Morales-Serna JA, Nussbaumer AL (2014) A switchable [2]rotaxane asymmetric organocatalyst that utilizes an acyclic chiral secondary amine. J Am Chem Soc 136(13):4905–4908

    CAS  PubMed  Google Scholar 

  7. De S, Pramanik S, Schmittel M (2014) A toggle nanoswitch alternately controlling two catalytic reactions. Angew Chem Int Ed 53(51):14255–14259

    CAS  Google Scholar 

  8. Cheng CY, McGonigal PR, Schneebeli ST, Li H, Vermeulen NA, Ke CF, Stoddart JF (2015) An artificial molecular pump. Nat Nanotechnol 10:547–553

    CAS  PubMed  Google Scholar 

  9. Leigh DA (2016) Genesis of the nanomachines: the 2016 nobel prize in chemistry. Angew Chem Int Ed 55(47):14506–14508

    CAS  Google Scholar 

  10. Feringa BL (2007) The art of building small: from molecular switches to molecular motors. J Org Chem 72:6635

    CAS  PubMed  Google Scholar 

  11. Coutrot F, Romuald C, Busseron E (2008) A new pH-switchable dimannosyl[c2]Daisy chain molecular machine. Org Lett 10:3477–3741

    Google Scholar 

  12. Norikane Y, Tamaoki N (2004) Light-driven molecular hinge: a new molecular machine showing a light-intensity-dependent photoresponse that utilizes the trans—cis isomerization of azobenzene. Org Lett 6:2595–2598

    CAS  PubMed  Google Scholar 

  13. Muraoka T, Kinbara K, Kobayashi Y, Aida T (2003) Light-driven open—close motion of chiral molecular scissors. J Am Chem Soc 125:5612

    CAS  PubMed  Google Scholar 

  14. Kottas GS, Clarke LI, Horinek D, Michl J (2005) Artificial molecular rotors. Chem Rev 105:1281–1376

    CAS  PubMed  Google Scholar 

  15. Kelly TR (2001) Progress toward a rationally designed molecular motor. Acc Chem Res 34(6):514–522

    CAS  PubMed  Google Scholar 

  16. Kelly TR, Sestelo JP (2001) Rotary motion in single-molecule machine. Struct Bond 99:19

    CAS  Google Scholar 

  17. Cozzi F, Guenzi A, Johnson CA, Mislow K (1981) Stereoisomerism and correlated rotation in molecular gear systems. Residual diastereomers of bis(2, 3-dimethyl-9-triptycyl)methane. J Am Chem Soc 103:957

    CAS  Google Scholar 

  18. Kawada Y, Iwamura H (1981) Anomeric effect in 2-alkoxytetrahydropyrans studied by carbon-13 and oxygen-17 NMR chemical shifts. J Am Chem Soc 46(24):4948–4952

    Google Scholar 

  19. Kao CY, Hsu YT, Lu HF, Chao I, Huang SL, Lin YC, Sun WT, Yang JS (2011) Toward a four-toothed molecular bevel gear with C2-symmetrical rotors. J Org Chem 76(14):5782–5792

    CAS  PubMed  Google Scholar 

  20. Stevens AM, Richards CJ (1997) A metallocene molecular gear. Tetrahedron Lett 38:7805–7808

    CAS  Google Scholar 

  21. Toyota S, Kawahata K, Sugahara K, Wakamatsu K, Iwanaga T (2017) Triple and quadruple triptycene gears in rigid macrocyclic frameworks. Eur J Org Chem 37:5696–5707

    Google Scholar 

  22. Ogi S, Ikeda T, Wakabayashi R, Shinkai S, Takeuchi M (2010) A bevel-gear-shaped rotor bearing a double-decker porphyrin complex. Chem-Eur J 16(28):8285–8290

    CAS  PubMed  Google Scholar 

  23. Frantz DK, Linden A, Baldridge KK, Siegel JS (2012) Molecular spur gears comprising triptycene rotators and bibenzimidazole-based stators. J Am Chem Soc 134(3):1528–1535

    CAS  PubMed  Google Scholar 

  24. Wang G, Ma L, Xiang J, Wang Y, Chen X, Che Y, Jiang H (2015) 2,6-pyridodicarboxamide-bridged triptycene molecular transmission devices: converting rotation to rocking vibration. J Org Chem 80(22):11302–11312

    CAS  PubMed  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB et al (2013) Gaussian 09 Versions D. 01. Gaussian Inc, Wallingford

    Google Scholar 

  26. ZhaoY Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167

    Google Scholar 

  27. ZhaoY Truhlar DG (2008) Benchmark data for interactions in zeolite model complexes and their use for assessment and validation of electronic structure methods. J Phys Chem C 112(17):6860–6868

    Google Scholar 

  28. Hohenstein EG, Chill ST, Sherrill CD (2008) Assessment of the performance of the M05–2X and M06–2X exchange-correlation functionals for noncovalent interactions in biomolecules. J Chem Theory Comput 4(12):1996–2000

    CAS  PubMed  Google Scholar 

  29. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100(8):5829–5835

    Google Scholar 

  30. Roy DD, Todd AK, John MM (2009) Gauss View 5.0.8. Gaussian Inc., Wallingford

    Google Scholar 

  31. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305

    CAS  PubMed  Google Scholar 

  32. Fukui K (1981) The path of chemical reactions-the IRC approach. Acc Chem Res 14(12):363–368

    CAS  Google Scholar 

  33. Fukui K (1970) Formulation of the reaction coordinate. J Phy Chem 74:4161

    CAS  Google Scholar 

  34. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    CAS  Google Scholar 

  36. Popelier P (2000) On the full topology of the Laplacian of the electron density. Coordin Chem Rev 197:169–189

    CAS  Google Scholar 

  37. Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J Mol Graph Model 38:314–323

    Google Scholar 

  38. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Google Scholar 

  39. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    CAS  Google Scholar 

  40. Roohi H, Nowroozi AR, Anjomshoa E (2011) H-bonded complexes of uracil with parent nitrosamine: a quantum chemical study. Comput Theor Chem 965(1):211–220

    CAS  Google Scholar 

  41. Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bond on the basis of the charge density. J Phys Chem 99:9747–9754

    CAS  Google Scholar 

  42. Pacios LF (2004) Topological descriptors of the electron density and the electron localization function in hydrogen bond dimers at short intermonomer distances. J Phys Chem A 108:1177

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6344 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Zhang, X., Li, H. et al. Theoretical design and rotational conformation analysis of molecular bevel gear with triptycene as rotator. Theor Chem Acc 139, 62 (2020). https://doi.org/10.1007/s00214-020-2576-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-2576-1

Keywords

Navigation