Skip to main content

Advertisement

Log in

Theoretical and experimental electronic spectra of neutral, monoprotonated and diprotonated dapsone

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Dapsone has been receiving growing interest due to it use as a new class of corrosion inhibitors, forming copolymers with aniline, pyrrole, diphenylamine and 4-aminodiphenylamine. The present work focuses on characterizing the theoretical and experimental electronic spectra of the neutral, monoprotonated and diprotonated dapsone. The theoretical electronic spectrum was obtained through the excited state characterization via time-dependent DFT theory. NBO analysis was carried out to identify the molecular orbitals involved in the detected experimental UV bands. The detected absorption wavelength values for the neutral dapsone were 292 and 258 nm (experiment), and 286.9 and 251.7 nm (theoretical). Concerning the protonated dapsone species, it was observed that the absorbance values were strongly dependent on pH, especially at pH between 1.0 and 4.0. As the pH of the solution decreases, the experimental band at 292 nm slowly decreases and shifts to 290 nm, while the absorption at 258 nm decreases until it disappears, and a new absorption band arises at 240 nm. While, when the basicity increases, the absorption spectra of dapsone do not change, but a regular red shift is noticed, and it is continued even up to pH 14.0. The red-shifted spectra may be due to the formation of a monoanion and/or dianion, but the isosbestic points were not constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Grunwald MH, Amichai B (1996) Dapsone—the treatment of infectious and inflammatory diseases in dermatology. Int J Antimicrob Agents 7:187–192

    Article  CAS  Google Scholar 

  2. Barnetson RS, Pearson JM, Rees RJ (1976) Evidence for prevention of borderline leprosy reactions by dapsone. Lancet 2:1171–1172. https://doi.org/10.1016/S0140-6736(76)91684-6

    Article  CAS  PubMed  Google Scholar 

  3. Dhople AM (2002) In vivo activity of epiroprim, a dihydrofolate reductase inhibitor, singly and in combination with dapsone, against Mycobacterium leprae. Int J Antimicrob Agents 19:71–74. https://doi.org/10.1016/S0924-8579(01)00470-8

    Article  CAS  PubMed  Google Scholar 

  4. Walling HW, Sontheimer RD (2009) Cutaneous lupus erythematosus: issues in diagnosis and treatment. Am J Clin Dermatol 10:365–381. https://doi.org/10.2165/11310780-000000000-00000

    Article  PubMed  Google Scholar 

  5. Ti TY, Jacob E, Wee YJ (1987) The effect of dapsone-pyrimethamine on immunoglobulin concentrations in malaria chemoprophylaxis. Trans R Soc Trop Med Hyg 81:245–246. https://doi.org/10.1016/0035-9203(87)90230-6

    Article  CAS  PubMed  Google Scholar 

  6. Yeo AET, Edstein MD, Rieckmann KH (1997) Antimalarial activity of the triple combination of proguanil, atovaquone and dapsone. Acta Trop 67:207–214. https://doi.org/10.1016/S0001-706X(97)00060-0

    Article  CAS  PubMed  Google Scholar 

  7. Mofenson LM, Brady MT, Danner SP, et al (2009) Guidelines for the prevention and treatment of opportunistic infections among HIV-Exposed and HIV-Infected children

  8. Siberry GK, Abzug MJ, Nachman S et al (2013) Guidelines for the prevention and treatment of opportunistic infections in HIV-exposed and HIV-infected children. Pediatr Infect Dis J. https://doi.org/10.1097/01.inf.0000437856.09540.11

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moura SL, Santos Júnior JR, Machado FBC et al (2015) Conductive organic polymers: an electrochemical route for the polymerization of dapsone. J Electroanal Chem 757:230–234. https://doi.org/10.1016/j.jelechem.2015.09.037

    Article  CAS  Google Scholar 

  10. Singh A, Kumar Singh A, Quraishi MA (2010) Dapsone: a novel corrosion inhibitor for mild steel in acid media. Open Electrochem 2(1):43–51

    Article  CAS  Google Scholar 

  11. Singh A, Avyaya JN, Ebenso EE, Quraishi MA (2013) Schiff’s base derived from the pharmaceutical drug Dapsone (DS) as a new and effective corrosion inhibitor for mild steel in hydrochloric acid. Res Chem Intermed 39:537–551. https://doi.org/10.1007/s11164-012-0577-y

    Article  CAS  Google Scholar 

  12. Chakravarthy MP, Mohana KN, Kumar CBP, Badiea AM (2015) Corrosion inhibition behaviour and adsorption characteristics of dapsone derivatives on mild steel in acid medium. Am Chem Sci 8:1–16

    Article  CAS  Google Scholar 

  13. Manisankar P, Vedhi C, Selvanathan G, Gurumallesh Prabu H (2006) Copolymerization of aniline and 4,4′-diaminodiphenyl sulphone and characterization of formed nano size copolymer. Electrochim Acta 52:831–838. https://doi.org/10.1016/j.electacta.2006.06.017

    Article  CAS  Google Scholar 

  14. Sharifirad M, Kiani F, Koohyar F (2013) Electrochemical characterization of the nano Py/DDS/SiO2 film on a copper electrode. Mater Technol 47:341–347

    CAS  Google Scholar 

  15. Manisankar P, Ilangeswaran D (2010) Electrochemical synthesis and spectroelectrochemical behavior of poly(diphenylamine-co-4,4′-diaminodiphenyl sulfone). Electrochim Acta 55:6546–6552. https://doi.org/10.1016/j.electacta.2010.06.023

    Article  CAS  Google Scholar 

  16. Ilangeswaran D, Manisankar P (2013) Electrochemical synthesis, characterization and electrochromic behavior of poly(4-aminodiphenylamine-co-4,4′-diaminodiphenyl sulfone). Electrochim Acta 87:895–904. https://doi.org/10.1016/j.electacta.2012.09.040

    Article  CAS  Google Scholar 

  17. Muthu S, Uma Maheswari J (2012) Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, 13C, 1H, UV) study, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 4-[(4-aminobenzene) sulfonyl] aniline by ab initio HF and density functional method. Spectrochim Acta Part A Mol Biomol Spectrosc 92:154–163. https://doi.org/10.1016/j.saa.2012.02.056

    Article  CAS  Google Scholar 

  18. Bhattacharya P, Sahoo D, Chakravorti S (2012) Revisit of 4,4′-diaminodiphenyl sulfone photophysics in different solvents. Ind Eng Chem Res 51:2505–2514. https://doi.org/10.1021/ie201113b

    Article  CAS  Google Scholar 

  19. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222. https://doi.org/10.1007/BF00533485

    Article  CAS  Google Scholar 

  20. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3 − 21 + G basis set for first-row elements, Li–F. J Comput Chem 4:294–301. https://doi.org/10.1002/jcc.540040303

    Article  CAS  Google Scholar 

  21. Francl MM, Pietro WJ, Hehre WJ et al (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665. https://doi.org/10.1063/1.444267

    Article  CAS  Google Scholar 

  22. Spitznagel GW, Clark T, von Ragué Schleyer P, Hehre WJ (1987) An evaluation of the performance of diffuse function-augmented basis sets for second row elements, Na–Cl. J Comput Chem 8:1109–1116. https://doi.org/10.1002/jcc.540080807

    Article  CAS  Google Scholar 

  23. Diaz-Fleming G, Célis F, Fredes C et al (2010) Surface-enhanced Raman scattering and density functional theory studies of bis(4-aminophenyl)sulfone. J Raman Spectrosc 41:160–166. https://doi.org/10.1002/jrs.2409

    Article  CAS  Google Scholar 

  24. Forner W, Badawi HM (2011) A DFT analysis of the molecular structures and vibrational spectra of diphenylsulfone and 4,4′-sulfonyldianiline (Dapsone). Zeitschrift fur Naturforsch B 66(1):69–76

    Article  CAS  Google Scholar 

  25. Mendes APS, Schalcher TR, Barros TG et al (2011) A geometric and electronic study of dapsone. J Comput Theor Nanosci 8:1–4. https://doi.org/10.1166/jctn.2011.1832

    Article  CAS  Google Scholar 

  26. Borges RS, Vale JKL, Schalcher TR et al (2013) A theoretical study of the dapsone derivatives on methemoglobin. J Comput Theor Nanosci 10:2029–2033. https://doi.org/10.1166/jctn.2013.3165

    Article  CAS  Google Scholar 

  27. Ildiz GO, Akyuz S (2012) Conformational analysis and vibrational spectroscopic studies on dapsone. Opt Spectrosc 113:495–504. https://doi.org/10.1134/s0030400x12110033

    Article  CAS  Google Scholar 

  28. Bhattacharya P, Chakravorti S (2013) Spectral features of 4,4-diaminodiphenyl sulfone in anionic and cationic inverted micelles. Chem Phys Lett 571:71–76. https://doi.org/10.1016/j.cplett.2013.04.003

    Article  CAS  Google Scholar 

  29. Rajendiran N, Swaminathan M (1995) Solvatochromism and prototropism of diaminodiphenyl sulphones and 2-aminodiphenyl sulphone: a comparative study by electronic spectra. J Photochem Photobiol A Chem 90:109–116. https://doi.org/10.1016/1010-6030(95)04078-T

    Article  CAS  Google Scholar 

  30. Gill PMW, Johnson BG, Pople JA, Frisch MJ (1992) The performance of the Becke–Lee–Yang–Parr (B-LYP) density functional theory with various basis sets. Chem Phys Lett 197:499–505. https://doi.org/10.1016/0009-2614(92)85807-M

    Article  CAS  Google Scholar 

  31. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  32. Gordon MS, Binkley JS, Pople JA et al (1982) Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J Am Chem Soc 104:2797–2803. https://doi.org/10.1021/ja00374a017

    Article  CAS  Google Scholar 

  33. Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261. https://doi.org/10.1063/1.1677527

    Article  CAS  Google Scholar 

  34. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  35. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  36. Dickinson C, Stewart JM, Ammon HL (1970) The X-ray crystal structure of the antimalarial and antileprotic drug, 4,4′-diaminodiphenyl sulphone. J Chem Soc D Chem Commun 15:920–921

    Article  Google Scholar 

  37. Caricato M (2012) Absorption and emission spectra of solvated molecules with the EOM–CCSD–PCM method. J Chem Theory Comput 8:4494–4502. https://doi.org/10.1021/ct3006997

    Article  CAS  PubMed  Google Scholar 

  38. Lipparini F, Scalmani G, Mennucci B et al (2010) A variational formulation of the polarizable continuum model. J Chem Phys 133:14106. https://doi.org/10.1063/1.3454683

    Article  CAS  Google Scholar 

  39. Barone V, Cossi M, Tomasi J (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107:3210–3221. https://doi.org/10.1063/1.474671

    Article  CAS  Google Scholar 

  40. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041. https://doi.org/10.1063/1.474659

    Article  Google Scholar 

  41. Mennucci B, Tomasi J (1997) Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys 106:5151–5158. https://doi.org/10.1063/1.473558

    Article  CAS  Google Scholar 

  42. Mennucci B, Cancès E, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J Phys Chem B 101:10506–10517. https://doi.org/10.1021/jp971959k

    Article  CAS  Google Scholar 

  43. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001. https://doi.org/10.1021/jp9716997

    Article  CAS  Google Scholar 

  44. Cossi M, Barone V, Mennucci B, Tomasi J (1998) Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem Phys Lett 286:253–260. https://doi.org/10.1016/S0009-2614(98)00106-7

    Article  CAS  Google Scholar 

  45. Tomasi J, Mennucci B, Cammi R (2005) Quantum Mechanical Continuum Solvation Models. Chem Rev 105:2999–3094. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  46. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464. https://doi.org/10.1016/0009-2614(96)00440-X

    Article  CAS  Google Scholar 

  47. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449. https://doi.org/10.1063/1.475855

    Article  CAS  Google Scholar 

  48. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218

    Article  CAS  Google Scholar 

  49. Van Caillie C, Amos RD (2000) Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals. Chem Phys Lett 317:159–164. https://doi.org/10.1016/S0009-2614(99)01346-9

    Article  Google Scholar 

  50. Furche F, Ahlrichs R (2002) Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys 117:7433–7447. https://doi.org/10.1063/1.1508368

    Article  CAS  Google Scholar 

  51. Scalmani G, Frisch MJ, Mennucci B et al (2006) Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. J Chem Phys 124:94107. https://doi.org/10.1063/1.2173258

    Article  CAS  PubMed  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, et al Gaussian 09 Revision D.01

  53. D’Cunha R, Kartha VB, Gurnani S (1983) Raman and i.r. studies of the antileprotic drug Dapsone. Spectrochim Acta Part A Mol Spectrosc 39:331–336. https://doi.org/10.1016/0584-8539(83)80007-5

    Article  Google Scholar 

  54. Boaz H, Rollefson GK (1950) The quenching of fluorescence. deviations from the Stern–Volmer law. J Am Chem Soc 72:3435–3443. https://doi.org/10.1021/ja01164a032

    Article  CAS  Google Scholar 

  55. Schulman SG, Sanders LB (1971) Fluorescence and phosphorescence of 5- and 8-aminoquinoline. Anal Chim Acta 56:83–89. https://doi.org/10.1016/S0003-2670(01)80111-2

    Article  CAS  PubMed  Google Scholar 

  56. Mishra AK, Swaminathan M, Dogra SK (1985) The fluorescence spectra of dianions of α- and β-naphthylamines. J Photochem 28:87–91. https://doi.org/10.1016/0047-2670(85)87018-0

    Article  CAS  Google Scholar 

  57. Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20(4):722–725. https://doi.org/10.1063/1.1700523

    Article  CAS  Google Scholar 

  58. Fukui K (1982) Role of frontier orbitals in chemical reactions. Science 218(4574):747–754. https://doi.org/10.1126/science.218.4574.747

    Article  CAS  Google Scholar 

  59. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  60. Rettig W, Chandross EA (1985) Dual fluorescence of 4,4'-dimethylamino- and 4,4'-diaminophenyl sulfone. Consequences of d-orbital participation in the intramolecular charge separation process. J Am Chem Soc 107(20):5617–5624. https://doi.org/10.1021/ja00306a006

    Article  CAS  Google Scholar 

  61. Su SG, Simon JD (1986) Solvent dynamics and twisted intramolecular charge transfer in bis(4-aminophenyl) sulfone. J Phys Chemi 90(24):6475–6479. https://doi.org/10.1021/j100282a014

    Article  CAS  Google Scholar 

  62. Su SG, Simon JD (1986) The importance of hydrogen bonded clusters in the stabilization of the intramolecular charge transfer state of 4,4'-diaminophenyl sulphone in alcohols and alcohol:acetonitrile mixtures. Chem Phys Lett 132(4–5):345–350. https://doi.org/10.1016/0009-2614(86)80623-6

    Article  CAS  Google Scholar 

  63. Hara K, Bulgarevich DS, Kajimoto O (1996) Pressure tuning of solvent viscosity for the formation of twisted intramolecular charge-transfer state in 4,4′-diaminodiphenyl sulfone in alcohol solution. J Chem Phys 104(23):9431–9436. https://doi.org/10.1063/1.471687

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors dedicate this work to Prof. Fernando Rei Ornellas for his excellence as an educator and supervisor, as well as for his leadership in the consolidation of the Computational Chemistry in Brazil. This work has been supported by Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under Grants 2019/03729-8, 2017/07707-3 and 2018/22669-3, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under Grants 307052/2016-8, 404337/2016-3, 309051/2016-9, 406107/2016-5 and 233595/2014-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Fernando Araujo Ferrão.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho & Francisco Bolivar Correto Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura, S.L., Fernandes, G.F.S., Machado, F.B.C. et al. Theoretical and experimental electronic spectra of neutral, monoprotonated and diprotonated dapsone. Theor Chem Acc 139, 53 (2020). https://doi.org/10.1007/s00214-020-2566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-2566-3

Keywords

Navigation