Skip to main content
Log in

Cooperative effect of hetero-nuclear MnNi+ cation enhancing C–H bond activation of cyclohexane: a theoretical study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Hetero-nuclear MnNi+ cation exhibits high catalytic activity in the C–H bond activation of cyclohexane in comparison with mono-nuclear Mn+ cation. The dehydrogenation reaction mechanistic investigations of cyclohexane catalyzed by MnNi+ and Mn+ have been carried out with density functional theory calculations. The activations of the first, third and fifth C–H bond of cyclohexane occur mainly because of the orbital interaction between the C–H σ bond of cyclic hydrocarbon and the empty d orbital of Mn. The smaller energy gaps of interacting orbitals result in stronger electron transfer between the related orbitals, which can elucidate MnNi+ cation is more reactive than Mn+. The coordination bonds between MnNi+ and cycloolefin in the second and third dehydrogenation processes of cyclohexane are another important factor for accelerating the dehydrogenation, which can stabilize the transition states for the activation of C–H bonds. The lower the transition state energy, the easier the C–H bond activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arndtsen BA, Bergman RG, Mobley TA, Peterson TH (1995) Selective intermolecular carbon–hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc Chem Res 28:154–162

    Article  CAS  Google Scholar 

  2. Crabtree RH (2001) Alkane C–H activation and functionalization with homogeneous transition metal catalysts: a century of progress—a new millennium in prospect. J Chem Soc Dalton Trans 17:2437–2450

    Article  Google Scholar 

  3. Labinger JA, Bercaw JE (2002) Understanding and exploiting C–H bond activation. Nature 417:507–514

    Article  CAS  Google Scholar 

  4. Shilov AE, Shul’pin GB (1997) Activation of C–H bonds by metal complexes. Chem Rev 97:2879–2932

    Article  CAS  Google Scholar 

  5. Liégault B, Lapointe D, Caron L, Vlassova A, Fagnou K (2009) Establishment of broadly applicable reaction conditions for the palladium-catalyzed direct arylation of heteroatom-containing aromatic compounds. J Org Chem 74:1826–1834

    Article  Google Scholar 

  6. Campeau L, Stuart DR, Leclerc J, Bertrand-Laperle M, Villemure E, Sun H, Lasserre S, Guimond N, Lecavallier M, Fagnou K (2009) Palladium-catalyzed direct arylation of azine and azole N-oxides: reaction development, scope and applications in synthesis. J Am Chem Soc 131:3291–3306

    Article  CAS  Google Scholar 

  7. Jafarpour F, Rahiminejadan S, Hazrati H (2010) Triethanolamine-mediated palladium-catalyzed regioselective C-2 direct arylation of free NH-pyrroles. J Org Chem 75:3109–3112

    Article  CAS  Google Scholar 

  8. Sattler JJHB, Ruiz-martinez J, Santillan-jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114:10613–10653

    Article  CAS  Google Scholar 

  9. Nawaz Z (2015) Light alkane dehydrogenation to light olefin technologies: a comprehensive review. Rev Chem Eng 31:413–436

    Article  CAS  Google Scholar 

  10. Vora BV (2012) Development of dehydrogenation catalysts and processes. Top Catal 55:1297–1308

    Article  CAS  Google Scholar 

  11. Searles K, Chan KW, Mendes Burak JA, Zemlyanov D, Safonova O, Copéret C (2018) Highly productive propane dehydrogenation catalyst using silica-supported Ga–Pt nanoparticles generated from single-sites highly productive propane dehydrogenation catalyst using silica-supported Ga–Pt nanoparticles generated from single-sites. J Am Chem Soc 140:11674–11679

    Article  CAS  Google Scholar 

  12. Al-shaikhali AH, Jedidi A, Anjum DH, Cavallo L, Takanabe K (2017) Kinetics on NiZn bimetallic catalysts for hydrogen evolution via selective dehydrogenation of methylcyclohexane to toluene. ACS Catal 7:1592–1600

    Article  CAS  Google Scholar 

  13. Yuan S, Meng L, Wang J (2013) Greatly improved methane dehydrogenation via Ni adsorbed Cu(100) surface. J Phys Chem C 117:14796–14803

    Article  CAS  Google Scholar 

  14. Wang S, Zhang D, Ma Y, Zhang H, Gao J, Nie Y, Sun X (2014) Aqueous solution synthesis of Pt–M (M = Fe, Co, Ni) bimetallic nanoparticles and their catalysis for the hydrolytic dehydrogenation of ammonia borane. ACS Appl Mater Interfaces 6:12429–12435

    Article  CAS  Google Scholar 

  15. Lei Y, Liu B, Lu J, Lobo-Lapidus RJ, Wu T, Feng H, Xia X, Mane AU, Libera JA, Greeley JP, Miller JT, Elam JW (2012) Synthesis of Pt–Pd core–shell nanostructures by atomic layer deposition: application in propane oxidative dehydrogenation to propylene. Chem Mater 24:3525–3533

    Article  CAS  Google Scholar 

  16. Cesar LG, Yang C, Lu Z, Ren Y, Zhang G, Miller JT (2019) Identification of a Pt3Co surface intermetallic alloy in Pt–Co propane dehydrogenation catalysts. ACS Catal 9:5231–5244

    Article  CAS  Google Scholar 

  17. Bratko I, Gómez M (2013) Polymetallic complexes linked to a single-frame ligand: cooperative effects in catalysis. Dalton Trans 42:10664–10681

    Article  CAS  Google Scholar 

  18. Haak RM, Belmonte MM, Escudero-Adán EC, Benet-Buchholza J, Kleij AW (2010) Olefin metathesis as a tool for multinuclear Co(III) salen catalyst construction: access to cooperative catalysts. Dalton Trans 39:593–602

    Article  CAS  Google Scholar 

  19. Kong S, Song K, Liang T, Guo C, Sun W, Redshaw C (2013) Methylene-bridged bimetallic α-diimino nickel(II) complexes: synthesis and high efficiency in ethylene polymerization. Dalton Trans 42:9176–9187

    Article  CAS  Google Scholar 

  20. Kuo H, Liu Y, Peng S, Liu S (2012) N,N′-Dialkylation catalyzed by bimetallic iridium complexes containing a saturated bis-N-heterocyclic carbene (NHC) Ligand. Organometallics 31:7248–7255

    Article  CAS  Google Scholar 

  21. Sabater S, Mata JA, Peris E (2012) Dual catalysis with an Ir III–AuI heterodimetallic complex: reduction of nitroarenes by transfer hydrogenation using primary alcohols. Chem A Eur J 18:6380–6385

    Article  CAS  Google Scholar 

  22. Wang Q, Mikkola S, Lönnberg H (2004) Bimetallic complexes of spiro-azacrown ligands as catalysts of phosphoester and phosphoric anhydride cleavage. Chem Biodivers 1:1316–1326

    Article  CAS  Google Scholar 

  23. Xi Z, Zhou Y, Chen W (2008) Efficient Negishi coupling reactions of aryl chlorides catalyzed by binuclear and mononuclear nickel-N-heterocyclic carbene complexes. J Org Chem 73:8497–8501

    Article  CAS  Google Scholar 

  24. Yamagiwa N, Matsunaga S, Shibasaki M (2003) Heterobimetallic catalysis in asymmetric 1,4-addition of O-alkylhydroxylamine to enones. J Am Chem Soc 125:16178–16179

    Article  CAS  Google Scholar 

  25. Seemeyer K, Schroeder D, Kempf M, Lettau O, Mueller J, Schwarz H (1995) Face selectivity of the C–H bond activation of cyclohexane by the “Bare” first-row transition-metal cations Sc+–Zn+. Organometallics 14:4465–4470

    Article  CAS  Google Scholar 

  26. Schlangen M, Schwarz H (2011) Probing elementary steps of nickel-mediated bond activation in gas-phase reactions: ligand- and cluster-size effects. J Catal 284:126–137

    Article  CAS  Google Scholar 

  27. MacTaylor RS, Vann WD, Castleman AW (1996) Thermal energy reaction rates of titanium monomer cation. J Phys Chem 100:5329–5333

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision D.01 Gaussian, Inc. Wallingford

  29. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132:15410401–15410419

    Article  Google Scholar 

  30. Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3:214–218

    Article  CAS  Google Scholar 

  31. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  32. Legault CY (2009) CYLview (v1.0b561) Universitéde Sherbrooke: http://www.cylview.org

  33. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  34. Yang Y, Hou X, Zhang T, Ma J, Zhang W, Tang S, Sun H, Zhang J (2018) Mechanistic insights into the nickel-catalyzed cross-coupling reaction of benzaldehyde with benzyl alcohol via C–H activation: a theoretical investigation. J Org Chem 83:11905–11916

    Article  CAS  Google Scholar 

  35. Ray M, Nakao Y, Sato H, Sakaki S, Watanabe T, Hashimoto H, Tobita H (2010) Experimental and theoretical study of a tungsten dihydride silyl complex: new insight into its bonding nature and fluxional behavior. Organometallics 29:6267–6281

    Article  CAS  Google Scholar 

  36. Sakaba H, Oike H, Kawai M, Takami M, Kabuto C, Ray M, Nakao Y, Sato H, Sakaki S (2011) Synthesis, structure, and bonding nature of ethynediyl-bridged bis(silylene) dinuclear complexes of tungsten and molybdenum. Organometallics 30:4515–4531

    Article  CAS  Google Scholar 

  37. Ochi N, Nakao Y, Sato H, Sakaki S (2010) 2 + 2 cycloaddition of Alkyne with titanium-imido complex: theoretical study of determining factor of reactivity and regioselectivity. J Phys Chem A 114:659–665

    Article  CAS  Google Scholar 

  38. Guan W, Sakaki S, Kurahashi T, Matsubara S (2015) Reasons two nonstrained C–C σ-bonds can be easily cleaved in decyanative [4 + 2] cycloaddition catalyzed by nickel(0)/lewis acid systems. Theoretical insight. ACS Catal 5:1–10

    Article  CAS  Google Scholar 

  39. Zeng G, Sakaki S (2012) Unexpected electronic process of H2 activation by a new nickel borane complex: comparison with the usual homolytic and heterolytic activations. Inorg Chem 52:2844–2853

    Article  Google Scholar 

  40. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  41. Dapprich S, Frenking G (1995) Investigation of donor–acceptor interactions: a charge decomposition analysis using fragment molecular orbitals. J Phys Chem 99:9352–9362

    Article  CAS  Google Scholar 

  42. Ehlers AW, Dapprich S, Vyboishchikov SF, Frenking G (1996) Structure and bonding of the transition-metal carbonyl complexes M(CO)5L (M = Cr, Mo, W) and M(CO)3L (M = Ni, Pd, Pt; L = CO, SiO, CS, N2, NO+, CN, NC−, HCCH, CCH2, CH2, CF2, H2)1. Organometallics 15:105–117

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Geng.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1991 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, F., Li, L., Zhang, X. et al. Cooperative effect of hetero-nuclear MnNi+ cation enhancing C–H bond activation of cyclohexane: a theoretical study. Theor Chem Acc 139, 48 (2020). https://doi.org/10.1007/s00214-020-2562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-2562-7

Keywords

Navigation