Skip to main content
Log in

DFT insight into Hashmi phenol synthesis catalyzed by Au single-walled nanotubes: mechanism and charge effect

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The mechanism and charge effect of cycloisomerization of ω-alkynylfuran (Hashmi phenol synthesis) catalyzed by single-walled helical gold nanotubes (Au SWNTs) have been systematically investigated via density functional theory. Cycloisomerization of ω-alkynylfuran occurs by the 5-exo Friedel–Crafts-type (FCT) mechanism, namely 5-exo cyclization, furan ring opening, and ring closing of the dienone carbene–gold intermediate. The reactions with Au(6,0), Au(6,1), Au(6,2) and Au(6,3) SWNTs show low energy barriers along the 5-exo FCT path in acetonitrile solvent, but have different the rate-determining steps. From an energy perspective, the reaction rate-determining step catalyzed by Au(6,0) and Au(6,3) is the ring-closing of dienone carbine-gold intermediate, but that of Au(6,1) and Au(6,2) is the IM5 dissociation from the Au SWNTs, which can be attributed to the diversity of the d-band centers of the Au(6,m) SWNTs. The effect of the charge of the Au SWNTs on the catalytic activity was also investigated. Theoretical analysis shows a prominent charge effect, where the cationic Au(6,0), Au(6,3) SWNTs and anionic Au(6,1), Au(6,2) SWNTs are more favorable for the Hashmi phenol synthesis reaction. This results can be attributed to the Au(6,0) and Au(6,3) SWNTs with positive charge can reduce the adsorption energy of the substrate on the catalyst surface and decrease the energy barrier of the cyclization process and ring-closing step. Besides, the Au(6,1) and Au(6,2) with an anion could obviously decrease the dissociation energy of IM5 which is help for the Hashmi phenol reaction. Theoretical analysis shows that the structure and charge effects could influence the catalytic activity of Au(6,m) SWNTs toward Hashmi phenol synthesis. This work will provide insight into cycloisomerization of ω-alkynylfuran and valuable information for application of Au SWNTs in catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tyman JHP (1996) Synthetic and natural phenols. Elsevier, Amsterdam

    Google Scholar 

  2. Schmidt RJ (2005) Appl Catal A-Gen 280:89–103

    Article  CAS  Google Scholar 

  3. Anderson KW, Ikawa T, Tundel RE, Buchwald SL (2006) J Am Chem Soc 37:10694–10695

    Article  Google Scholar 

  4. Xiao Y, Xu Y, Cheon HS, Chae J (2013) J Org Chem 44:5804–5809

    Article  Google Scholar 

  5. Alonso DA, Najera C, Pastor IM, Yus M (2010) Chem- Eur J 41:5274–5284

    Article  Google Scholar 

  6. Maleczka RE, Shi F, Holmes D, Smith MRI (2003) J Am Chem Soc 34:7792–7793

    Article  Google Scholar 

  7. Hashmi ASK, Frost TM, Bats J (2000) J Am Chem Soc 122:11553–11554

    Article  CAS  Google Scholar 

  8. Carrettin S, Blanco MC, Corma A, Hashmi ASK (2006) Adv Synth Catal 348:1283–1288

    Article  CAS  Google Scholar 

  9. Hashmi ASK, Blanco MC, Kurpejović E, Frey W, Bats JW (2006) Adv Synth Catal 348:709–713

    Article  CAS  Google Scholar 

  10. MC Blanco Jaimes, CRN Böhling, JM Serrano-Becerra and ASK Hashmi Angew (2013) Chem Int Ed, 2013 52, 7963–7966.

  11. Hashmi ASK, Rudolph M, Weyrauch JP, Wölfle M, Frey W, Bats JW (2005) Angew Chem Int Ed 44:2798–2801

    Article  CAS  Google Scholar 

  12. Hashmi ASK, Frost TM, Bats JW (2001) Org Lett 3:3769–3771

    Article  CAS  Google Scholar 

  13. Martín-Matute B, Nevado C, Cárdenas D, Diego J, Echavarren MA (2003) J Am Chem Soc 125:5757–5766

    Article  Google Scholar 

  14. Martín-Matute B, Cárdenas DJ, Echavarren AM (2001) Angew Chem Int Ed 40:4754–4757

    Article  Google Scholar 

  15. Hashmi ASK, Kurpejović E, Wölfle M, Frey W, Bats JW (2007) Adv Synth Catal 349:1743–1750

    Article  CAS  Google Scholar 

  16. Hashmi ASK, Rudolph M, Siehl HU, Tanaka M, Bats JW, Frey W (2008) Chem-Eur J 14:3703–3708

    Article  CAS  Google Scholar 

  17. Oliver-Meseguer J, Leyva-Perez A, Corma A (2013) ChemCatChem 5:3509–3515

    Article  CAS  Google Scholar 

  18. Chen Y, Yan W, Akhmedov NG, Shi X (2010) Org Lett 12:344–347

    Article  CAS  Google Scholar 

  19. Yang M, Chen Z, Luo Y, Zhang J, He R, Wei S, Tang D, Li M (2016) ChemCatChem 8:2367–2375

    Article  CAS  Google Scholar 

  20. Tang D, Yang M, Zhang J, He R, Wei S, Li M (2016) ChemCatChem 8:461–470

    Article  CAS  Google Scholar 

  21. Yang M, Chen Z, Luo Y, Zhang J, Tang D, He R, Wei S, Ming L (2016) Rsc Advances 6:22709–22721

    Article  CAS  Google Scholar 

  22. Luo Y, Chen Z, Zhang J, Tang Y, Xu Z, Tang D (2017) RSC Adv 7:13473–13486

    Article  CAS  Google Scholar 

  23. Kang M, Lee H, Kang T, Kim B (2015) J Mater Sci Technol 31:573–580

    Article  CAS  Google Scholar 

  24. An W, Pei Y, Zeng XC (2008) Nano Lett 8:195–202

    Article  CAS  Google Scholar 

  25. Sanchez-Castillo MA, Couto C, Kim WB, Dumesic JA (2004) Angew Chem Inter Ed 43:1140–1142

    Article  CAS  Google Scholar 

  26. Zhang X, Wang H, Bourgeois L, Pan R, Zhao D, Webley PA (2008) J Mater Chem 18:463–467

    Article  CAS  Google Scholar 

  27. Meier DC, Goodman DW (2004) J Am Chem Soc 126:1892–1899

    Article  CAS  Google Scholar 

  28. Chen M, Cai Y, Yan Z, Goodman DW (2006) J Am Chem Soc 128:6341–6346

    Article  CAS  Google Scholar 

  29. M. Valden, X. Lai, and D. W. Goodman, 1998, 281, Science, 1647–1650.

  30. Chen MS, Goodman DW (2004) Science 306:252–255

    Article  CAS  Google Scholar 

  31. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  32. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  34. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  35. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  36. B. J. M. S. Delley, Mol Simulat, 2006, 32, 117–123.1., DOI: https://doi.org/10.1016/j.tet.2012.02.028.

  37. Senger R, Dag S, Ciraci S (2004) Phys Rev Lett 93:196807

    Article  CAS  Google Scholar 

  38. Hammer B, Morikawa Y, Nørskov JK (1996) Phys Rev Lett 76:2141–2144

    Article  CAS  Google Scholar 

  39. Nørskov JK (1991) Prog Surf Sci 38:103–144

    Article  Google Scholar 

  40. Nilsson A, Pettersson LGM, Hammer B, Bligaard T, Christensen CH, Nørskov JK (2005) Catal Lett 100:111–114

    Article  CAS  Google Scholar 

  41. Nørskov JK, Abildpedersen F, Studt F, Bligaard T (2011) P Natl A Sci 3:937–943

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21573030), National Key Research and Development Program of China (2018YFC1602101), National Key Research, the Chongqing Science and Technology Commission, China (Grant No. CSTC2018JCYJAX0041) and Project of Chongqing Key Laboratory of Environmental Materials and Restoration Technology (CEK1803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dianyong Tang, Gang Zhao or Jianping Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 24,586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Luo, Y., Yan, H. et al. DFT insight into Hashmi phenol synthesis catalyzed by Au single-walled nanotubes: mechanism and charge effect. Theor Chem Acc 140, 12 (2021). https://doi.org/10.1007/s00214-020-02715-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02715-8

Keywords

Navigation