Skip to main content

Advertisement

Log in

Ab initio study of thermophysical properties of β-PbO2 under high temperature and pressure

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We report a theoretical investigation on the finite temperature thermophysical properties of tetragonal lead dioxide (β-PbO2) material using ab initio calculations in the framework of the density functional theory within the generalized gradient approximation. The thermophysical properties for temperatures up to 600 K are determined and analyzed in detail using the quasi-harmonic Debye model. Experimentally, the β-PbO2 transforms to α-PbO2 at around 1 GPa. For that, the maximum value of pressure considered here is taken to be 1 GPa. Our findings show that the thermophysical properties of interest vary monotonically with both temperature and pressure which is consistent with previous studies of semiconducting materials. At zero pressure and temperature of 300 K, the isothermal bulk modulus and the Debye temperature are found to be around 113 GPa and 370.5 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhuravlev YN, Korabel’nikov DV (2017) A first principles study of the mechanical, electronic, and vibrational properties of lead oxide. Phys Solid State 59:2296

    Article  CAS  Google Scholar 

  2. Fitas R, Zerroual L, Chelali N, Djellouli B (1996) Heat treatment of α-and β-battery lead dioxide and its relationship to capacity loss. J Power Sources 58:225

    Article  CAS  Google Scholar 

  3. Chen Z, Yu Q, Liao D, Guo Z, Wu J (2013) Influence of nano-CeO 2 on coating structure and properties of electrodeposited Al/α-PbO 2/β-PbO 2. Trans Nonferrous Met Soc China 23:1382

    Article  CAS  Google Scholar 

  4. Kopczyński K, Kolanowski L, Baraniak M, Lota K, Sierczyńska A, Lota G (2017) Highly amorphous PbO2 as an electrode in hybrid electrochemical capacitors. Curr Appl Phys 17:66

    Article  Google Scholar 

  5. He Z, Hayat MD, Huang S, Wang X, Cao P (2018) PbO2 electrodes prepared by pulse reverse electrodeposition and their application in benzoic acid degradation. J Electroanal Chem 812:74

    Article  CAS  Google Scholar 

  6. Quiroz MA, Martίnez-Huitle CA, Meas-Voug Y, Bustos E, Cerro-Lopez M (2017) Effect of lead dioxide high dispersion on titania nanotubes electrodes on the enhanced electrooxidation of aqueous p-nitrophenol and methyl red: An electrode comparative study. J Electroanal Chem 807:261

    Article  CAS  Google Scholar 

  7. Shih Y-J, Huang Y-H, Huang CP (2017) Oxidation of ammonia in dilute aqueous solutions over graphite-supported α-and β-lead dioxide electrodes (PbO2@G). Electrochem Acta 257:444

    Article  CAS  Google Scholar 

  8. Müller D, Knoll C, Artner W, Harasek M, Gierl-Mayer C, Welch JM, Werner A, Weinberger P (2017) Combining in-situ X-ray diffraction with thermogravimetry and differential scanning calorimetry–an investigation of Co3O4, MnO2 and PbO2 for thermochemical energy storage. Sol Energy 153:11

    Article  Google Scholar 

  9. Haines J, Leger JM, Schulte O (1996) The high-pressure phase transition sequence from the rutile-type through to the cotunnite-type structure in PbO2. J Phys Condens Matter 8:1631

    Article  CAS  Google Scholar 

  10. Harada H, Sasa Y, Uda M (1981) Crystal data for ß-PbO2. J Appl Crystallogr 14:141

    Article  Google Scholar 

  11. D’Antonio P, Santoro A (1980) Powder neutron diffraction study of chemically prepared β-lead dioxide. Acta Crystallogr B 36:2394

    Article  Google Scholar 

  12. Scanlon DO, Kehoc AB, Watson GW, Jones MO, David WIF, Payne DJ, Egdell RG, Edwards PP, Walsh A (2011) Nature of the band gap and origin of the conductivity of PbO2 revealed by theory and experiment. Phys Rev Lett 107:246402

    Article  Google Scholar 

  13. Fitas R, Zerroual L, Chelali N, Djellouli B (2000) Thermal degradation of α-and β-PbO2 and its relationship to capacity loss. J Power Sources 85:56

    Article  CAS  Google Scholar 

  14. Payne DJ, Egdell RG, Paolicelli G, Offi F, Panaccione G, Lacovig P, Monaco G, Vanko G, Walsh A, Watson GW, Guo J, Beamson G, Glans PA, Learmonth T, Smith KE (2007) Nature of electronic states at the Fermi level of metallic β−PbO2  revealed by hard X-ray photoemission spectroscopy. Phys Rev B 75:153102

    Article  Google Scholar 

  15. Payne DJ, Egdell RG, Law DSL, Glans PA, Learmonth T, Smith KE, Guo J, Walsh A, Watson GW (2007) Experimental and theoretical study of the electronic structures of α-PbO and β-PbO2. J Mater Chem 17:267

    Article  CAS  Google Scholar 

  16. Heinemann M, Terpstra HJ, Haas C, de Groot RA (1995) Electronic structure of β-PbO 2 and its relation with BaPbO3. Phys Rev B 52:11740

    Article  CAS  Google Scholar 

  17. Bouarissa N (2002) Electron and positron energy levels and deformation potentials in group‐III Nitrides. Phys Status Solidi B 231:391

    Article  CAS  Google Scholar 

  18. Holzapfel WB (1996) Physics of solids under strong compression. Rep Prog Phys 59:29

    Article  CAS  Google Scholar 

  19. Bouarissa N (2002) Pressure dependence of optoelectronic properties of GaN in the zinc-blende structure. Mater Chem Phys 73:51

    Article  CAS  Google Scholar 

  20. Badding JV (1998) High-pressure synthesis, characterization, and tuning of solid state materials. Annu Rev Mater Sci 28:631

    Article  CAS  Google Scholar 

  21. Daoud S, Bioud N, Bouarissa N (2015) Structural phase transition, elastic and thermal properties of boron arsenide: pressure-induced effects. Mater Sci Semicond Process 31:124

    Article  CAS  Google Scholar 

  22. Kassali K, Bouarissa N (2002) Composition and temperature dependence of electron band structure in ZnSe1− xSx. Mater Chem Phys 76:255

    Article  CAS  Google Scholar 

  23. Gygi F, Galli G (2005) Ab initio simulation in extreme conditions. Mater Today 8:26

    Article  CAS  Google Scholar 

  24. Saib S, Bouarissa N (2007) Structural parameters and transition pressures of ZnO: ab‐initio calculations. Phys Status Solidi B 244:1063

    Article  CAS  Google Scholar 

  25. Bioud N, Kassali K, Bouarissa N (2017) Thermodynamic properties of compressed CuX (X= Cl, Br) compounds: ab initio study. J Electron Mater 46:2521

    Article  CAS  Google Scholar 

  26. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2014) WIEN2K, an augmented plane wave + local orbitals program for calculating crystal properties. Vienna Univ. Technol., Vienna, Austria

    Google Scholar 

  27. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  Google Scholar 

  28. Wu Z, Cohen RE (2006) More accurate generalized gradient approximation for solids. Phys Rev B 73:235116

    Google Scholar 

  29. Zunger A, Freeman AJ (1977) Ground-and excited-state properties of LiF in the local-density formalism. Phys Rev B 16:2901

    Article  CAS  Google Scholar 

  30. Khaldi A, Bouarissa N, Ghodbane H, Tabourot L (2019) Phase transition, mechanical stability and optical response of MnSe: pressure effect. Physica B 553:6

    Article  CAS  Google Scholar 

  31. Otero-de-la-Roza A, Abbasi-Perez D, Luaña V (2011) Gibbs2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput Phys Commun 182:2232

    Article  CAS  Google Scholar 

  32. Uzunok HY, Tütüncü HM, Karaca E, Srivastava GP (2019) Theoretical investigation of antisymmetric spin-orbit coupling effect on the physical properties of noncentrosymmetric BaPtSb superconductor. Intermetallics 108:109

    Article  CAS  Google Scholar 

  33. Tütüncü HM, Karaca E, Uzunok HY, Srivastava GP (2019) Physical properties of hexagonal BaPtAs with noncentrosymmetric SrPtSb-type and centrosymmetric YPtAs-type crystal structures: effects of spin-orbit coupling. Phys Rev B 100:174507

    Article  Google Scholar 

  34. Blanco MA, Francisco E, Luaña V (2004) GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput Phy Commun 158:57

    Article  CAS  Google Scholar 

  35. Daoud S, Bouarissa N (2019) Structural and thermodynamic properties of cubic sphalerite aluminum nitride under hydrostatic compression. Comput Condens Matter 19:e00359

    Article  Google Scholar 

  36. Algarni H, Al-Hagan OA, Bouarissa N, Khan MA, Alhuwaymel TF (2017) Dependence on pressure of the elastic parameters and microhardness of InSb. Infrared Phys Technol 86:176

    Article  CAS  Google Scholar 

  37. Hao YJ, Cheng Y, Wang YJ, Chen XR (2007) Elastic and thermodynamic properties of c-BN from first-principles calculations. Chin Phys 16:217

    Article  CAS  Google Scholar 

  38. Saib S, Bouarissa N, Rodríguez-Hernández P, Muñoz A (2014) Elastic modulus and thermal properties of InN in the rocksalt phase. Comput Mater Sci 81:374

    Article  CAS  Google Scholar 

  39. Daoud S, Bouarissa N (2019) Elastic, piezoelectric and thermal properties of zinc-blende AlN under pressure. Theor Chem Accounts 138:49

    Article  Google Scholar 

  40. Bioud N, Sun XW, Daoud S, Song T, Liu ZJ (2018) Structural stability and thermodynamic properties of BSb under high pressure and temperature. Mater Res Express 5:085904

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Bouarissa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bounab, F., Chelali, NE., Merrouche, A. et al. Ab initio study of thermophysical properties of β-PbO2 under high temperature and pressure. Theor Chem Acc 140, 14 (2021). https://doi.org/10.1007/s00214-020-02713-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02713-w

Keywords

Navigation