Skip to main content
Log in

Value of NMR relaxation parameters of diamagnetic molecules for quantum information processing: optimizing the coherent phase

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Quantum computing is the science that studies the applications of quantum mechanics in computer science. Thus, a quantum computer is an entity which can store quantum information, which in turn is an innovative procedure that creates conditions to allow the implementation of quantum algorithms and simulations, wherein the decoherence is a key problem. Considering the unique qubits, the time of the coherence phase can be well measured by the time of transversal relaxation (T2). In this line, we study the PPN derivatives, PPN-F, PPN-ethyl and PPN-NH2, as candidates to carry out quantum information. Therefore, the structures were optimized at the B3LYP/6-311G(d,p) level; after the optimization, molecular dynamics (MD) simulations were performed and the structures obtained were selected by statistical inefficiency method to then obtain the relaxation parameters (T1 and T2). The modification in the PPN molecule increases the transverse relaxation rate phosphorus nuclear spins at most five times because of the hydrogen bonds. From our findings, the studied molecules showed excellent candidates for the processing of quantum information; however, it is important to rule out the PPN-NH2 molecule that has more significant values of T1 and T2, and thus, this compound stands out from the others studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen MA, Chuang IL (2010) Quantum computation and quantum information. Cambridge University Press, New York

    Book  Google Scholar 

  2. Dorai K, Arvind KA (2000) Implementing quantum-logic operations, pseudopure states, and the Deutsch–Jozsa algorithm using noncommuting selective pulses in NMR. Phys Rev A 61:042306-1-042306–7

    Article  Google Scholar 

  3. Vandersypen LMK, Chuang IL (2005) NMR techniques for quantum control and computation. Rev Mod Phys 76:1037–1069

    Article  Google Scholar 

  4. Walsh JPS, Freedman DE (2016) Using supramolecular chemistry to build quantum logic gates. Chem 1:668–669

    Article  CAS  Google Scholar 

  5. Olson J, Cao Y, Romero J et al (2014) Quantum information and computation for chemistry. John Wiley & Sons Inc., Hoboken, New Jersey

    Google Scholar 

  6. Swift MW, Van de Walle CG, Fisher MPA (2018) Posner molecules: from atomic structure to nuclear spins. Phys Chem Chem Phys 20:12373–12380

    Article  CAS  Google Scholar 

  7. Xin T, Wang BX, Li KR et al (2018) Nuclear magnetic resonance for quantum computing: techniques and recent achievements. Chin Phys B 27:020308–020308

    Article  Google Scholar 

  8. Vind FA, Foerster A, Oliveira IS et al (2016) Experimental realization of the Yang–Baxter equation via NMR interferometry. Sci Rep 6:1–8

    Article  Google Scholar 

  9. Negrevergne C, Mahesh TS, Ryan CA et al (2006) Benchmarking quantum control methods on a 12-qubit System. Phys Rev Lett 96(17):170501–170504

    Article  CAS  Google Scholar 

  10. Solomon I, Bloembergen N (1956) Nuclear magnetic interactions in the HF molecule. Nuclear magnetic interactions in the HF molecule. J Chem Phys 25:261–266

    Article  CAS  Google Scholar 

  11. Kutzelnigg W, Fleischer U, Schindler M (1990) The IGLO method: Ab-initio calculation and interpretation of NMR chemical shifts and magnetic susceptibilities. NMR Basic Princ Prog 23:165–262

    Article  Google Scholar 

  12. Faber R, Sauer SPA, Gauss J (2017) Importance of triples contributions to NMR spin−spin coupling constants computed at the CC3 and CCSDT levels. J Chem Theory Comput 13:696–709

    Article  CAS  Google Scholar 

  13. Gonçalves MA, Santos LS, Peixoto FC, da Cunha EFF, Ramalho TC (2019) NMR relaxation and relaxivity parameters of MRI probes revealed by optimal wavelet signal compression of molecular dynamics simulations. Int J Quantum Chem 119(10):e25896

    Article  Google Scholar 

  14. Lino JBR, Ramalho TC (2019) Exploring through-space spin−spin couplings for quantum information processing: facing the challenge of coherence time and control quantum states. J Phys Chem A 7:1372–1379

    Article  Google Scholar 

  15. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Cryst B72:171–179

    Google Scholar 

  16. Nielsen AB, Holder AJ (2009) Gauss View 5.0, User’s Reference. GAUSSIAN Inc., Pittsburgh

  17. Frisch MJ, Trucks GW, Schlegel HB et al (2013) Gaussian 09. Gaussian Inc., Wallingford, CT

    Google Scholar 

  18. SciLab v 2.7. 1989–2003 INRIA/ENPC

  19. Grivet JP (2005) NMR relaxation parameters of a Lennard–Jones fluid from molecular-dynamics simulations. J Chem Phys 123(034503–1):034503–034509

    Article  Google Scholar 

  20. MATLAB 7.6 and statistics toolbox

  21. Helgaker T, Jaszunzki M, Ruud K (1999) Ab initio methods for the calculation of NMR shielding and indirect spin–spin coupling constants. Chem Rev 99:293–352

    Article  CAS  Google Scholar 

  22. Coutinho K, Canuto S (1997) Solvent effects from a sequential Monte Carlo-quantum mechanical approach. Adv Quantum Chem 28:89–105

    Article  CAS  Google Scholar 

  23. Coutinho K, Canuto S, Zerner MC (2000) A Monte Carlo-quantum mechanics study of the solvatochromic shifts of the lowest transition of benzene. J Chem Phys 112:9874–9880

    Article  CAS  Google Scholar 

  24. Gonçalves MA, Santos LS, da Peixoto FC, Cunha EFF, Ramalho TC (2017) Comparing structure and dynamics of solvation of different iron oxide phases for enhanced magnetic resonance imaging. ChemistrySelect 2:10136–10142

    Article  Google Scholar 

  25. Lu D, Brodutch A, Li J et al (2014) Experimental realization of post-selected weak measurements on an NMR quantum processor. New J Phys 16:053015–053027

    Article  Google Scholar 

  26. Devra A, Prabhu P, Singh H et al (2018) Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming. Quantum Inf Process 17:67–91

    Article  Google Scholar 

  27. Gonçalves MA, Peixoto FC, Cunha EFF et al (2014) Dynamics, NMR parameters and hyperfine coupling constants of the Fe3O4(100) water interface: Implications for MRI probes. Chem Phys Lett 309:88–92

    Article  Google Scholar 

  28. Gonçalves MA, da Cunha EFF, Peixoto FC et al (2015) Probing thermal and solvent effects on hyperfine interactions and spin relaxation rate of d-FeOOH(100) and [MnH3buea(OH)]2-: toward new MRI probes. Comput Theor Chem 1069:96–104

    Article  Google Scholar 

  29. Patinec V, Rolla GA, Tripier R et al (2013) Hyperfine coupling constants on inner-sphere water Molecules of a triazacyclononane-based Mn(II) complex and related systems relevant as MRI contrast agents. Inorg Chem 19:11173–11184

    Article  Google Scholar 

  30. Chavhan GB, Babyn PS, Thomas B et al (2009) Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 29:1433–1449

    Article  Google Scholar 

  31. Glaser SJ, Marx R, Reiss T et al (2005) Quantum information processing. Wiley-VCH, Weinheim, pp 58–69

    Book  Google Scholar 

  32. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  33. Grabowski SJ (2011) What is the covalency of hydrogen bonding? Chem Rev 111:2597–2625

    Article  CAS  Google Scholar 

  34. Koch U, Popelier PLA (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Brazilian financial agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo ao Ensino e Pesquisa de Minas Gerais (FAPEMIG) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Ministério da Defesa (CAPES/MD) for financial support and the Federal University of Lavras (UFLA) for providing the physical infrastructure and workspace. This work was also supported by excellence project FIM UHK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodorico Castro Ramalho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Reis Lino, J.B., Gonçalves, M.A. & Ramalho, T.C. Value of NMR relaxation parameters of diamagnetic molecules for quantum information processing: optimizing the coherent phase. Theor Chem Acc 140, 8 (2021). https://doi.org/10.1007/s00214-020-02706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02706-9

Keywords

Navigation