Skip to main content
Log in

New benzene dimers: a benchmark theoretical investigation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A wide variety of methods have been used to study the retro-dimerization reactions of one cis-fused (1) and four new trans-fused benzene dimers (25). These methods, which included both single-reference and multi-reference approaches, were benchmarked against multi-reference Møller-Plesset perturbation theory of the second order (MRMP2) based on CASSCF(12,12) wavefunctions. Each of the single-reference approaches was found to be overestimating the activation barrier for retro-dimerization process. Interestingly, N-electron valence perturbation theory (NEVPT2) energies also diverged for these reactions from MRMP2 values. Canonical MP2 barriers were in better agreement with MRMP2 results than the NEVPT2 numbers, with mean unsigned deviations (MUD) of 5.4 kcal/mol and 6.6 kcal/mol, respectively. The behavior of each of the methods is discussed and compared with the application of the same methods to the standard pericyclic reaction set proposed by Houk et al. (J Phys Chem A 107:11445, 2003). The comparison between NEVPT2 and MRMP2 reaction barriers, when applied to the cycloadditions in the Houk set and the synchronous symmetry-allowed retro-dimerization of the benzene dimer 1, showed that these two methods give almost identical results for these reaction types (MUD of 0.5 kcal/mol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Woodward RB, Hoffmann R (1969) Angew Chem Int Ed 8:781

    CAS  Google Scholar 

  2. Fukui K, Yonezawa T, Shingu H (1952) J Chem Phys 20:722

    CAS  Google Scholar 

  3. Diels O, Alder K (1928) Justus Liebigs Ann Chem 460:98

    CAS  Google Scholar 

  4. Rogachev AYu, Wen X-D, Hoffmann R (2012) J Am Chem Soc 134:8062

    CAS  PubMed  Google Scholar 

  5. Engelke R, Hay PJ, Kleier DA, Wadt WR (1983) J Chem Phys 79:4367

    CAS  Google Scholar 

  6. Engelke R, Hay PJ, Kleier DA, Wadt WR (1984) J Am Chem Soc 106:5439

    CAS  Google Scholar 

  7. Schriver GW, Gerson DJ (1990) J Am Chem Soc 112:4723

    CAS  Google Scholar 

  8. Wang Y, Li Z, Wang F, Sun C (2009) Phys Chem Chem Phys 11:455

    CAS  PubMed  Google Scholar 

  9. Cometta-Morini C, Baumann H, Oth JFM (1992) J Mol Struct Theochem 277:15 (also Refs. 6 and 7)

    Google Scholar 

  10. Cometta-Morini C, Baumann H, Oth JFM (1992) J Mol Struct Theochem 277:31 (also Refs. 6 and 7)

    Google Scholar 

  11. Engelke R (1986) J Am Chem Soc 108:5799 (also Refs. 7, 8, and 4)

    CAS  PubMed  Google Scholar 

  12. Quenneville J, Germann TC (2009) J Chem Phys 131:024313 (also Refs. 7, 8, and 4)

    PubMed  Google Scholar 

  13. Zade SS, Zamoshchik N, Reddy RR, Fridman-Marueli G, Shberla D, Bendikov M (2011) J Am Chem Soc 133:10803 (also Refs. 7, 8, and 4)

    CAS  PubMed  Google Scholar 

  14. Bernardi F, Bottoni A, Robb MA, Venturini A (1990) J Am Chem Soc 112:2106

    CAS  Google Scholar 

  15. Beno BR, Wilsey S, Houk KN (1999) J Am Chem Soc 121:4816

    CAS  Google Scholar 

  16. Koch R, Wentrup C (2004) Org Biomol Chem 2:195

    CAS  PubMed  Google Scholar 

  17. Sakai S (2006) J Phys Chem A 110:6339 (also see Ref. 44)

    CAS  PubMed  Google Scholar 

  18. Dupuis M, Murray C, Davidson ER (1991) J Am Chem Soc 113:9756 (also see Ref. 44)

    CAS  Google Scholar 

  19. Wiest O, Black KA, Houk KN (1994) J Am Chem Soc 116:10336 (also see Ref. 44)

    CAS  Google Scholar 

  20. Hrovat DA, Morokuma K, Borden WT (1994) J Am Chem Soc 116:1072 (also see Ref. 44)

    CAS  Google Scholar 

  21. Koslowski PM, Dupuis M, Davidson ER (1995) J Am Chem Soc 117:774 (also see Ref. 44)

    Google Scholar 

  22. Hrovat DA, Chen J, Houk KN, Borden WT (2000) J Am Chem Soc 122:7656 (also see Ref. 44)

    Google Scholar 

  23. Staroverov VN, Davidson ER (2000) J Am Chem Soc 122:7377 (also see Ref. 44)

    CAS  Google Scholar 

  24. Bethke S, Hrovat DA, Borden WT, Gleiter R (2004) J Org Chem 69:3294 (also see Ref. 44)

    CAS  PubMed  Google Scholar 

  25. Blavins JJ, Cooper DL, Karadakov PB (2004) J Phys Chem A 108:194 (also see Ref. 44)

    CAS  Google Scholar 

  26. Jiao H, Schleyer PR (1995) Angew Chem Int Ed 34:334 (also see Ref. 44)

    CAS  Google Scholar 

  27. Sakai S (2000) Int J Quantum Chem 80:1099 (also see Ref. 44)

    CAS  Google Scholar 

  28. Minkin VI, Minyaev RM, Yudilevich IA (1987) Russ J Org Chem 23:1137 (also see Refs. 4 and 44)

    CAS  Google Scholar 

  29. Carpenter BK (1992) J Org Chem 57:4645 (also see Refs. 4 and 44)

    CAS  Google Scholar 

  30. Lee I, Lee BS, Kim ND, Kim CK (1992) Bull Kor Chem Soc 13:565 (also see Refs. 4 and 44)

    CAS  Google Scholar 

  31. Bachrach SM (1993) J Org Chem 58:5414 (also see Refs. 4 and 44)

    CAS  Google Scholar 

  32. Kless A, Nendel M, Wilsey S, Houk KN (1999) J Am Chem Soc 121:4524 (also see Refs. 4 and 44)

    CAS  Google Scholar 

  33. Mateo A, Sanchez-Andrada P, Lopez-Leonardo C, Alvarez A (2005) J Org Chem 70:7617 (also see Refs. 4 and 44)

    Google Scholar 

  34. Ramig K, Greer EM, Szalda DJ, Razi R, Mahir F, Pokeza N, Wong W, Kaplan B, Lam J, Mannan A, Missak C, Mai D, Subramaniam G, Berkowitz WF, Prasad P, Karimi S, Lo NH, Kudzma LV (2010) Eur J Org Chem 2010:2363 (also see Refs. 4 and 44)

    Google Scholar 

  35. Dolbier WR Jr, Koroniak H, Houk KN, Sheu C (1996) Acc Chem Res 29:471 (see also Refs. 4, 16, and 44)

    CAS  Google Scholar 

  36. Jean Y, Volatron F, Nguyen TA (1983) J Mol Struct (Theochem) 10:167 (see also Refs. 4, 16, and 44)

    CAS  Google Scholar 

  37. Santiago O, Sole A (1991) J Am Chem Soc 113:8628 (see also Refs. 4, 16, and 44)

    Google Scholar 

  38. Niwayama S, Kallel EA, Sheu C, Houk KN (1996) J Org Chem 61:2517 (see also Refs. 4, 16, and 44)

    CAS  Google Scholar 

  39. Niwayama S, Kallel EA, Spellmeyer DC, Sheu C, Houk KN (1996) J Org Chem 61:2813 (see also Refs. 4, 16, and 44)

    CAS  PubMed  Google Scholar 

  40. Faza ON, Lopez CS, Alvarez R, de Lera AR (2004) Org Lett 6:905 (see also Refs. 4, 16, and 44)

    PubMed  Google Scholar 

  41. Faza O, Lopez CS, Alvarez R, de Lera AR (2004) J Org Chem 69:9002 (see also Refs. 4, 16, and 44)

    PubMed  Google Scholar 

  42. Mangelinckx S, van Speybroeck V, Vansteenkiste P, Waroquier M, de Kimpe N (2008) J Org Chem 73:5481 (see also Refs. 4, 16, and 44)

    CAS  PubMed  Google Scholar 

  43. Sader CA, Houk KN (2012) J Org Chem 77:4939 (see also Refs. 4, 16, and 44)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Guner V, Khuong KS, Leach AG, Lee PS, Bartberger MD, Houk KN (2003) J Phys Chem A 107:11445

    CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    CAS  Google Scholar 

  46. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    CAS  Google Scholar 

  47. Adamo C, Barone V (1999) J Chem Phys 110:6158

    CAS  Google Scholar 

  48. Erzernhof M, Scuseris G (1999) J Chem Phys 110:5029

    Google Scholar 

  49. Neese F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:73

    CAS  Google Scholar 

  50. Dunning TH Jr (1989) J Chem Phys 90:1007

    CAS  Google Scholar 

  51. Granovsky AA, Firefly version 8.0, www http://classic.chem.msu.su/gran/firefly/index.html

  52. Neese F, Wennmohs F, Hansen A, Becker U (2009) Chem Phys 356:98

    CAS  Google Scholar 

  53. Izsak R, Neese F (2011) J Chem Phys 135:144105

    PubMed  Google Scholar 

  54. Kendall RA, Früchtl HA (1997) Theor Chem Acc 97:158

    CAS  Google Scholar 

  55. Neese F, Schwabe T, Kossmann S, Schirmer B, Grimme S (2009) J Chem Theory Comput 5:3060

    CAS  PubMed  Google Scholar 

  56. Friesner RA (1985) Chem Phys Lett 116:39

    CAS  Google Scholar 

  57. Friesner RA (1986) J Chem Phys 85:1462

    CAS  Google Scholar 

  58. Friesner RA (1987) J Chem Phys 86:3522

    CAS  Google Scholar 

  59. Grimme S (2003) J Chem Phys 118:9095

    CAS  Google Scholar 

  60. Kossmann S, Neese F (2010) J Phys Chem A 114:11768 (see also Ref. 54)

    CAS  PubMed  Google Scholar 

  61. Lochan RC, Head-Gordon M (2007) J Chem Phys 126:164101 (see also Refs. 59 and 54)

    PubMed  Google Scholar 

  62. Hirao K (1992) Chem Phys Lett 190:374

    CAS  Google Scholar 

  63. Hirao K (1992) Chem Phys Lett 196:397

    CAS  Google Scholar 

  64. Hirao K (1992) Int J Quant Chem S26:517

    Google Scholar 

  65. Hirao K (1993) Chem Phys Lett 201:59

    CAS  Google Scholar 

  66. Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP (2001) J Chem Phys 114:10252

    CAS  Google Scholar 

  67. Angeli C, Cimiraglia R, Malrieu JP (2001) Chem Phys Lett 350:297

    CAS  Google Scholar 

  68. Angeli C, Cimiraglia R (2002) Theor Chem Acc 107:313

    CAS  Google Scholar 

  69. Angeli C, Cimiraglia R, Malrieu JP (2002) J Chem Phys 117:9138

    CAS  Google Scholar 

  70. Dyall KG (1995) J Chem Phys 102:4909

    CAS  Google Scholar 

  71. Schapiro I, Sivalingam K, Neese F (2013) J Chem Theory Comput 9:3567

    CAS  PubMed  Google Scholar 

  72. Granovsky AA (2011) J Chem Phys 134:214113

    PubMed  Google Scholar 

  73. Nakano H (1993) J Chem Phys 99:7983

    CAS  Google Scholar 

  74. Lyakh DI, Musial M, Lotrich VF, Bartlett RJ (2011) Chem Rev 112:182

    PubMed  Google Scholar 

  75. McNeely J, Rogachev AY (2020) Theor Chem Acc Accepted, Manuscript ID: TCAC-D-20-00070

  76. Bofill JM, Pulay P (1989) J Chem Phys 90:3637

    CAS  Google Scholar 

  77. Pulay P, Hamilton TP (1988) J Chem Phys 88:4926

    CAS  Google Scholar 

  78. Bone RGA, Pulay P (1992) Int J Quant Chem 45:133

    Google Scholar 

  79. Lee TJ, Taylor PR (1989) Int J Quant Chem S23:199

    Google Scholar 

  80. Cramer CJ, Wloch M, Piecuch P, Puzzarini C, Gagliardi L (1991) J Phys Chem A 2006:110

    Google Scholar 

  81. Liakos DG, Neese F (2011) J Chem Theory Comput 7:1511

    CAS  PubMed  Google Scholar 

  82. Bozkaya U, Sherrill CD (2013) J Chem Phys 138:184103

    PubMed  Google Scholar 

  83. Kurlancheek W, Head-Gordon M (2009) Mol Phys 107:1223

    CAS  Google Scholar 

  84. Gadzhiev OB, Ignatov SK, Krisyuk BE, Maiorov AV, Gangopadhyay S, Masunov AE (2012) J Phys Chem A 116:10420

    CAS  PubMed  Google Scholar 

  85. DeMore WB (1969) J Chem Kinet 1:209

    CAS  Google Scholar 

  86. Criegee R (1975) Angew Chem Int Ed 14:745

    Google Scholar 

Download references

Acknowledgements

Financial support from Illinois Institute of Technology (start-up funds, A.Y.R) and partial support from the Wanger Institute for Sustainable Energy Research (WISER) Seed Grant (A.Y.R) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Rogachev.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 59163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNeely, J., Rogachev, A.Y. New benzene dimers: a benchmark theoretical investigation. Theor Chem Acc 139, 168 (2020). https://doi.org/10.1007/s00214-020-02684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02684-y

Keywords

Navigation