Skip to main content
Log in

A theoretical investigation on conformers of imidazolinium salts

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Structures, energies, and electronic properties of anti- and syn-atropisomeric conformers of some chiral imidazolinium salts bearing a substituted aromatic ring have been computed and compared at the B3LYP/6-311+G(d,p) level of density functional theory. Results indicate that the presence of a bulky substituent on the ortho position of the aromatic ring present in these compounds is mainly responsible of the chiral discrimination due to high interconversional energy barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rogers RD, Seddon KR (eds) (2003) Ionic liquids as green solvents: progress and prospects. American Chemical Society, Washington, DC

    Google Scholar 

  2. Mévellec V, Leger B, Mauduit M, Roucoux A (2005) Chem Commun 22:2838–2839

    Google Scholar 

  3. Sledź P, Mauduit M, Grela K (2008) Chem Soc Rev 37:2433–2442

    PubMed  Google Scholar 

  4. Wasserscheid P, Welton T (eds) (2008) Ionic liquids in synthesis, 2nd edn. Wiley, Weinheim

    Google Scholar 

  5. Freemantle M (2009) An introduction to ionic liquids. Royal Society of Chemistry, Cambridge

    Google Scholar 

  6. Aoun B (2010) Liquides ioniques: structure et dynamique. Ph.D. Thesis, University of Orléans

  7. Ohno H (2011) Electrochemical aspects of ionic liquids, 2nd edn. Wiley, Weinheim

    Google Scholar 

  8. Kokorin A (2011) Ionic liquids: applications and perspectives. InTech, India

    Google Scholar 

  9. Sowmiah S, Cheng CI, Chu Y-H (2012) Curr Org Synth 9:74–95

    CAS  Google Scholar 

  10. De Los Ríos AP, Fernández FJH (2014) Ionic liquids in separation technology. Elsevier, Amsterdam

    Google Scholar 

  11. Clousier N, Filippi A, Borré E, Guibal E, Crévisy C, Caijo F, Mauduit M, Dez I, Gaumont A-C (2014) ChemSuschem 7:1040–1045

    CAS  PubMed  Google Scholar 

  12. Eftekhari A (2017) Ionic liquid devices. Royal Society of Chemistry, Cambridge

    Google Scholar 

  13. MacFarlane DR, Kar M, Pringle JM (2017) Fundamentals of ionic liquids: from chemistry to applications. Wiley, Weinheim

    Google Scholar 

  14. Welton T (2018) Biophys Rev 10:691–706

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bouchardy L (2016) Elaboration de liquides ioniques (chiraux) réversibles et applications en catalyse organique et en glycochimie. Carbènes N-hétérocycliques chiraux: synthèse et application dans la réaction d’addition conjuguée. Ph.D. Thesis, Paris-Saclay University

  16. Shiflett MB, Scurto AM (2017) ACS Symp Ser 1250:1–13

    CAS  Google Scholar 

  17. Zhang Q, Zhang S, Deng Y (2011) Green Chem 13:2619–2637

    CAS  Google Scholar 

  18. Neto BAD, Spencer J (2012) J Braz Chem Soc 23:987–1007

    CAS  Google Scholar 

  19. Ratti R (2014) Adv Chem 2014:1–16

    Google Scholar 

  20. Hardacre C, Parvulescu V (2014) Catalysis in ionic liquids: from catalyst synthesis to application. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  21. Steinrück H-P, Wasserscheid P (2015) Catal Lett 145:380–397

    Google Scholar 

  22. Romanovsky BV, Tarkhanova IG (2017) Russ Chem Rev 86:444–458

    CAS  Google Scholar 

  23. Ozokwelu D, Zhang S, Okafor O, Cheng W, Litombe N (2017) Novel catalytic and separation processes based on ionic liquids. Elsevier, Washington, DC

    Google Scholar 

  24. Xia S-M, Chen K-H, Fu H-C, He L-N (2018) Front Chem 6:462–469

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Karimi B, Tavakolian M, Akbari M, Mansouri F (2018) Chem Cat Chem 10:3173–3205

    CAS  Google Scholar 

  26. Lozano P (2018) Sustainable catalysis in ionic liquids. CRC Press, Boca Raton

    Google Scholar 

  27. Vidal L, Riekkola ML, Canals A (2012) Anal Chim Acta 715:19–41

    CAS  PubMed  Google Scholar 

  28. Patel DD, Lee JM (2012) Chem Rec 12:329–355

    CAS  PubMed  Google Scholar 

  29. Lei Z, Dai C, Zhu J, Chen B (2014) AIChE J 60:3312–3329

    CAS  Google Scholar 

  30. Han D, Row KH (2010) Molecules 15:2405–2426

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodríguez H (2016) Ionic liquids for better separation processes. Springer, Berlin

    Google Scholar 

  32. Cowan MG, Gin DL, Noble RD (2016) Acc Chem Res 49:724–732

    CAS  PubMed  Google Scholar 

  33. Paul A, Mandal PK, Samanta A (2005) J Phys Chem B 109:9148–9153

    CAS  PubMed  Google Scholar 

  34. Vioux A, Viau L, Volland S, Le Bideau J (2010) CR Chim 13:242–255

    CAS  Google Scholar 

  35. Castro Ruiz CA (2012) Évaluation de nouveaux électrolytes à base de liquides ioniques protiques en supercapacités asymétriques de type MnO2/carbone. Ph.D. Thesis, University of Montreal

  36. Behera K, Pandey S, Kadyan A, Pandey S (2015) Sensors 15:30487–30503

    CAS  PubMed  Google Scholar 

  37. Shahvelayati AS, Sabbaghan M, Bashtani SE (2015) Int J Nanosci Nanotechnol 11:123–131

    Google Scholar 

  38. Muginova SV, Myasnikova DA, Kazarian SG, Shekhovtsova TN (2017) Anal Sci 33:261–274

    CAS  PubMed  Google Scholar 

  39. Renuga V, Manikandan A, Mohan CN, Meenatchi B, Ganga B (2017) J Mol Liq 244:65–76

    CAS  Google Scholar 

  40. Fernández CDR, Arosa Y, Algnamat BS, Lago E-L, Varela LM, De la Fuente R (2019) Front Opt 10:1364–1397

    Google Scholar 

  41. Gelinas B (2017) Liquides ioniques électroactifs dans la composition d’électrolytes avancés pour des applications en énergie. Doctoral Thesis, University of Montreal

  42. Matsumoto K, Hwang J, Kaushik S, Chen C-Y, Hagiwara R (2019) Energy Environ Sci 12:3247–3287

    CAS  Google Scholar 

  43. Gao X, Wu F, Mariani A, Passerini S (2019) ChemSuschem 12:4185–4193

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Angell M, Zhu G, Lin M-C, Rong Y, Dai H (2019) Adv Funct Mater 30:1928

    Google Scholar 

  45. Kamijo T, Arafune H, Morinaga T, Honma S, Sato T, Hino M, Mizukami M, Kurihara K (2015) Langmuir 31:13265–13270

    CAS  PubMed  Google Scholar 

  46. Voeltzel N (2016) Molecular simulation of an ionic liquid as lubricant: from bulk rheology to nanoconfinement. Doctoral Thesis, National Institute of Applied Sciences, Lyon

  47. Rohlmann P, Munavirov B, Furó I, Antzutkin O, Rutland MW, Glavatskih S (2019) Front Chem 7:98–106

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Avilés M-D, Pamies R, Sanes J, Carrión F-J, Bermúdez M-D (2019) Coatings 9:710–720

    Google Scholar 

  49. Smiglak M, Pringle JM, Lu X, Han L, Zhang S, Gao H, MacFarlane DR, Rogers RD (2014) Chem Commun 50:9228–9250

    CAS  Google Scholar 

  50. Domingos S, Andre V, Quaresma S, Martins IC, Minas da Piedade MF, Duarte MT (2015) J Pharm Pharmacol 67:830–846

    CAS  PubMed  Google Scholar 

  51. Dias AR, Costa-Rodrigues J, Fernandes MH, Ferraz R, Prudêncio C (2016) ChemMedChem 12:11–18

    PubMed  Google Scholar 

  52. Giszter R, Fryder M, Marcinkowska K, Sznajdrowska A (2016) J Braz Chem Soc 27:1774–1781

    CAS  Google Scholar 

  53. Egorova KS, Gordeev EG, Ananikov VP (2017) Chem Rev 117:7132–7189

    CAS  PubMed  Google Scholar 

  54. Miskiewicz A, Ceranowicz P, Szymczak M, Bartu’s K, Kowalczyk P (2018) Int J Mol Sci 19:2779–2803

    PubMed Central  Google Scholar 

  55. Shah MUH, Sivapragasam M, Moniruzzaman M, Talukder MMR, Yusup SB, Goto M (2018) J Mol Liq 266:568–576

    CAS  Google Scholar 

  56. Wang Z, Zhang J, Lu B, Li Y, Liang Y, Yuan J, Zhao M, Wang B, Mai C, Zhang J (2019) J Mol Liq 296:111822

    CAS  Google Scholar 

  57. Gomes JM, Silva SS, Reis RL (2019) Chem Soc Rev 48:4317–4335

    CAS  PubMed  Google Scholar 

  58. Tigineh GT, Abebe A (2019) Bioinorg Chem Appl 10:1155–1163

    Google Scholar 

  59. Jovanović-Šanta S, Kojić V, Atlagić K, Tot A, Vraneš M, Gadžurić S, Karaman M (2019) J Serb Chem Soc 84:1–13

    Google Scholar 

  60. Tang J, Song H, Feng X, Yohannes A, Yao S (2019) Curr Med Chem 26:5947–5967

    CAS  PubMed  Google Scholar 

  61. Schrekker HS, Donato RK, Fuentefria AM, Bergamo V, Oliveira LF, Machado MM (2013) MedChemComm 4:1457–1460

    CAS  Google Scholar 

  62. Riduan SN, Zhang Y (2013) Chem Soc Rev 42:9055–9070

    CAS  PubMed  Google Scholar 

  63. Odžak R, Skočibušić M, Maravić A (2013) Bioorg Med Chem 21:7499–7506

    PubMed  Google Scholar 

  64. Elshaarawy RF, Janiak C (2014) Eur J Med Chem 75:31–42

    CAS  PubMed  Google Scholar 

  65. Reinhardt A, Horn M, Schmauck JP, Bröhl A, Giernoth R, Oelkrug C, Schubert A, Neundorf I (2014) Bioconjug Chem 25:2166–2174

    CAS  PubMed  Google Scholar 

  66. Gravel J, Schmitzer AR (2017) Org Biomol Chem 15:1051–1071

    CAS  PubMed  Google Scholar 

  67. Yuan Y, Zhang Y (2017) ChemMedChem 12:835–840

    CAS  PubMed  Google Scholar 

  68. Ocakoglu K, Tasli H, Limoncu MH, Lambrecht FY (2018) Trends Cancer Res Chemother. https://doi.org/10.15761/tcrc.1000103

    Article  Google Scholar 

  69. Hryniewicka A, Malinowska M, Hauschild T, Pieczul K, Morzycki JW (2019) J Steroid Biochem Mol Biol 189:65–72

    CAS  PubMed  Google Scholar 

  70. Deng G, Zhou B, Wang J, Chen Z, Gong L, Gong Y, Wu D, Li Y, Zhang H, Yang X (2019) Eur J Med Chem 168:232–252

    CAS  PubMed  Google Scholar 

  71. Bal S, Kaya R, Gök Y, Taslimi P, Aktaş A, Karaman M, Gülçin İ (2020) Bioorg Chem 94:103468

    CAS  PubMed  Google Scholar 

  72. Deetlefs M, Fanselow M, Seddon KR (2016) RSC Adv 6:4280–4288

    CAS  Google Scholar 

  73. Heckenbach ME, Romero FN, Green MD, Halden RU (2016) Chemosphere 150:266–274

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shamshina JL, Kelley SP, Gurau G, Rogers RD (2015) Nature 528:188–189

    CAS  PubMed  Google Scholar 

  75. Clavier H, Coutable L, Toupet L, Guillemin J-C, Mauduit M (2005) J Organomet Chem 690:5237–5254

    CAS  Google Scholar 

  76. Clavier H, Coutable L, Guillemin J-C, Mauduit M (2005) Tetrahedron Asymmetry 16:921–924

    CAS  Google Scholar 

  77. Martin D, Kehrli S, Augustin M, Clavier H, Mauduit M, Alexakis A (2006) J Am Chem Soc 128:8416–8417

    CAS  PubMed  Google Scholar 

  78. Handy ST (2006) J Org Chem 71:4659–4662

    CAS  PubMed  Google Scholar 

  79. Clavier H, Nolan SP, Mauduit M (2008) Organometallics 27:2287–2292

    CAS  Google Scholar 

  80. Winkel A, Wilhelm R (2009) Tetrahedron Asymmetry 20:2344–2350

    CAS  Google Scholar 

  81. Borre E, Caijo F, Crévisy C, Mauduit M (2009) Chim Oggi 27:20–24

    CAS  Google Scholar 

  82. McGarrigle EM, Fritz SP, Favereau L, Yar M, Aggarwal VK (2011) Org Lett 13:3060–3063

    CAS  PubMed  Google Scholar 

  83. Yang L, Sun R, Zhang L, Li Y, Cao C, Pang G, Shi Y (2011) J Chem Res 35:608–610

    CAS  Google Scholar 

  84. Benhamou L, Chardon E, Lavigne G, Laponnaz SB, Cesar V (2011) Chem Rev 111:2705–2733

    CAS  PubMed  Google Scholar 

  85. Germain N, Magrez M, Kehrli S, Mauduit M, Alexakis A (2012) Eur J Org Chem 2012:5301–5306

    CAS  Google Scholar 

  86. Thomasset A (2013) Synthèse de carbènes N-hétérocycliques chiraux et applications en catalyse asymétrique. Ph.D. Thesis, University of Paris Sud

  87. Guerria M, Sekhri L, Olivier C, Jean-Luc P (2014) Compd Orient J Chem 30:427–434

    Google Scholar 

  88. Jahier-Diallo C, Morin MST, Queval P, Rouen M, Artur I, Querard P, Toupet L, Crévisy C, Baslé O, Mauduit M (2015) Chem Eur J 21:993–997

    CAS  PubMed  Google Scholar 

  89. Hellou N, Jahier-Diallo C, Baslé O, Srebro-Hooper M, Toupet L, Roisnel T, Caytan E, Roussel C, Vanthuyne N, Autschbach J, Mauduit M, Crassous J (2016) Chem Commun 52:9243–9246

    CAS  Google Scholar 

  90. Tarrieu R, Dumas A, Thongpaen J, Vives T, Roisnel T, Dorcet V, Crévisy C, Baslé O, Mauduit M (2017) J Org Chem 82:1880–1887

    CAS  PubMed  Google Scholar 

  91. Curbet I, Morvan J, Rouen SC, Roisnel T, Crévisy C, Mauduit M (2019) Arkivoc 4:102–112

    Google Scholar 

  92. Rix D, Labat S, Toupet L, Crévisy C, Mauduit M (2009) Eur J Inorg Chem 2009:1989–1999

    Google Scholar 

  93. Clavier H, Boulanger L, Audic N, Toupet L, Mauduit M, Guillemin J-C (2004) Chem Commun 2004:1224–1225

    Google Scholar 

  94. Kong L, Morvan J, Pichon D, Jean M, Albalat M, Vives T, Colombel-Rouen S, Giorgi M, Dorcet V, Roisnel T, Crévisy C, Nuel D, Nava P, Humbel S, Vanthuyne N, Mauduit M, Clavier H (2020) J Am Chem Soc 142:93–98

    CAS  PubMed  Google Scholar 

  95. Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871

    Google Scholar 

  96. Kohn W, Sham LJ (1965) Phys Rev A 140:1133–1138

    Google Scholar 

  97. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. University Press UK, Oxford

    Google Scholar 

  98. Dreizler RM, Gross EKV (1990) Density functional theory: an approach to the manybody problem. Springer, Berlin

    Google Scholar 

  99. Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley, Weinheim

    Google Scholar 

  100. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian16, Revision B.01, Gaussian Inc., Wallingford, CT. http://www.gaussian.com

  101. Mardirossiana N, Head-Gordon N (2017) Mol Phys 115:2315–2372

    Google Scholar 

  102. Becke AD (1993) J Chem Phys 98:1372–1377

    CAS  Google Scholar 

  103. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    CAS  Google Scholar 

  104. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    CAS  PubMed  Google Scholar 

  105. NBO 5.0., Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) Theoretical Chemistry Institute. University of Wisconsin, Madison, WI. http://www.chem.wisc.edu/~nbo5

  106. Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073

    CAS  Google Scholar 

  107. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    CAS  Google Scholar 

  108. Gorelsky SI (2009) AOMix program, program for molecular orbital analysis, Rev 6.42. University of Ottawa: Ottawa. http://www.sg-chem.net/aomix

  109. Gorelsky SI, Lever ABP (2001) J Organomet Chem 635:187–196

    CAS  Google Scholar 

  110. Flükiger P, Lüthi HP, Portmann S, Weber J (2000-2002) Molekel 4.3. Swiss Center for Scientific Computing: Manno. http://www.cscs.ch/molekel

  111. Wiberg KB (1966) Tetrahedron 24:1083–1096

    Google Scholar 

  112. Mayer I (2006) J Comput Chem 28:204–221

    Google Scholar 

Download references

Acknowledgements

AL acknowledges a doctoral fellowship and travel grants from the PROFAS French-Algerian Program and the Algerian-French Program Tassili-07MDU700, respectively. We thank Dr Marc Mauduit (University of Rennes) for providing experimental data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdelkader Ladjarafi or Jean-François Halet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 431 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladjarafi, A., Meghezzi, H. & Halet, JF. A theoretical investigation on conformers of imidazolinium salts. Theor Chem Acc 139, 165 (2020). https://doi.org/10.1007/s00214-020-02677-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02677-x

Keywords

Navigation