Skip to main content
Log in

Trans ligand effects on 195Pt NMR shielding constants of square planar Pt(II) complexes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The trans ligand effects on the isotropic σiso 195Pt NMR shielding constants, described by the unified term of trans-philicity, for a broad series of square planar trans-Pt(PMe3)2(X)L (X = H, CO, CH3, NH2, OH2, Cl) complexes, were investigated by DFT computational protocols at the 2-component spin–orbit zero-order approximation (2c-SO-ZORA) level of theory. The established trans-philicity sequences are almost identical for all series of complexes. The relative strength of trans-philicity is defined as the difference between the calculated σiso(SO) 195Pt NMR shielding constants for the complete set of ligands and the σiso(SO) 195Pt NMR shielding constant of the complex containing the ligand with the weakest trans-philicity. Noteworthily, the 195Pt NMR trans-philicity sequences retrieve the experimental trans-orienting series. The linear correlations between the σiso(SO) 195Pt NMR shielding constants and the σiso(SO) X NMR shielding constants shows that upon increase in the upfield shift of the σiso(SO) 195Pt NMR increase the downfield shift of the σiso(SO) X NMR shielding constants. The linear σiso(SO) 195Pt versus QPt correlations show that the increase in the negative natural atomic charge QPt increases the downfield shift of the σiso(SO) 195Pt shielding constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Chart 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Basolo F, Pearson RG (1962) Prog Inorg Chem 4:381–453

    CAS  Google Scholar 

  2. Pidcock A, Richards RE, Venanzi, LM (1966) J Chem Soc A 1707–1710

  3. Appleton TG, Clark HC, Manzer LE (1973) Coord Chem Rev 10:335–422

    Article  CAS  Google Scholar 

  4. Hartley FR (1973) Chem Soc Rev 2:163–179

    Article  CAS  Google Scholar 

  5. Vanquickenborne LG, Vranckx J, Gorller-Walrand C (1974) J Am Chem Soc 96:4121–4125

    Article  CAS  Google Scholar 

  6. Lin Z, Hall MB (1991) Inorg Chem 30:646–651

    Article  CAS  Google Scholar 

  7. Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemisty: principles of structure and reactivity, 4th edn. Harper Collins College Publishers, New York

    Google Scholar 

  8. Coe BJ, Glenwright SJ (2000) Coord Chem Rev 203:5–80

    Article  CAS  Google Scholar 

  9. Crabtree RH (2001) theorganometallic chemistry of the transition metals. Wiley, New York

    Google Scholar 

  10. Wendt OF, Deeth RJ, Elding LI (2000) Inorg Chem 39:5271–52766

    Article  CAS  Google Scholar 

  11. Toledo JC, Dos Santos Lima Neto B, Franco DW (2005) Coord Chem Rev 249:419–431

    Article  CAS  Google Scholar 

  12. Martín A, Orpen AG (1996) J Am Chem Soc 118:1464–1470

    Article  Google Scholar 

  13. Harris SE, Orpen AG, Bruno IJ, Taylor RJ (2005) J Chem Inf Model 45:1727–1748

    Article  CAS  Google Scholar 

  14. Hocking RK, Hambley TW (2003) Chem Commun 1516–1517

  15. Ericson V, Ovqvist KL, Noren B, Oskarsson A (1992) Acta Chem Scand 46:854–860

    Article  CAS  Google Scholar 

  16. Oskarsson A, Noren B, Svensson C, Elding LI (1990) Acta Crystallogr Sect B Struct Sci 46:748–752

    Article  Google Scholar 

  17. Powell J, Shaw BL (1965) J Chem Soc Lond 3879

  18. Clark HC, Kurosawa H (1972) J Organomet Chem 36:399–409

    Article  CAS  Google Scholar 

  19. Dean RR, Green JC (1968) J Chem Soc A 3047

  20. Atkins PW, Green JC, Green MLH (1968) J Chem Soc A 2275

  21. Anja H, Greif AH, Hrobárik P, Hrobáriková V, Arbuznikov AV, Autschbach J, Kaupp M (2015) Inorg Chem 54:7199–7208

    Article  Google Scholar 

  22. Tsipis CA (2019) Dalton Trans 48:1814–1822

    Article  CAS  Google Scholar 

  23. Tsipis CA (2019) J Comput Chem 40:2550–2562

    Article  CAS  Google Scholar 

  24. Tsipis CA (2020) New J Chem 44:7976–7986

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewsk VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pittsburgh PA, Pople JA (2010) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford

  26. ADF2019, SCM, Theoretical chemistry. Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com

  27. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Let 77:3865

    Article  CAS  Google Scholar 

  28. Ernzerhof M, Scuseria G (1999) J Chem Phys 110:5029

    Article  CAS  Google Scholar 

  29. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  30. Pantazis DA, Chen X-Y, Landis CR, Neese F (2008) J Chem Theory Comput 4:908

    Article  CAS  Google Scholar 

  31. EMSL basis set exchange. https://bse.pnl.gov/bse/portal

  32. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  33. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  34. Weinhold F (1988) In the encyclopedia of computational chemistry. Schleyer, PvR, Ed, John Wiley & Sons, Chichester, UK

  35. Ditchfield R (1964) Mol Phys 27:789–807

    Article  Google Scholar 

  36. Gauss J (1993) J Chem Phys 99:3629–3643

    Article  CAS  Google Scholar 

  37. van Lenthe E, Snijders JG, Baerends EJ (1996) J Chem Phys 105:6505–6516

    Article  Google Scholar 

  38. van Lenthe E, Ehlers AE, Baerends EJ (1999) J Chem Phys 110:8943–8953

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanassios C. Tsipis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2020_2663_MOESM1_ESM.docx

Electronic Supplementary Material Calculated σiso(SO) 195Pt and σiso(SO) 195X shielding constants (Tables S1–S6) (DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsipis, A.C. Trans ligand effects on 195Pt NMR shielding constants of square planar Pt(II) complexes. Theor Chem Acc 139, 151 (2020). https://doi.org/10.1007/s00214-020-02663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02663-3

Keywords

Navigation