Skip to main content
Log in

A theoretical study on water-assisted excited state double proton transfer process in substituted 2,7-diazaindole-H2O complex

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The substituted effect on the first excited-state proton transfer (ESPT) process in 2,7-diazaindole-H2O (2,7-DAI-H2O) complex in water was studied in detail at the TD-M06-2X/6–311 + G(d, p) level. The frontier molecular orbital, geometries, reaction mechanism and energies of ESPT process with different substituent have been analyzed. ESPT process in the title complex occurred concertedly but highly asynchronously no matter of the electronic nature of substituent. The absorption and fluorescence peaks, H-bond distances, asynchronicity of ESPT and barrier height were affected by the substituent. The Hammett’s substituent constant had linear correlation with the difference between the sum of N1−O11 and O11−N7 distances in the reactant and that in the TS and Mulliken charge of H3O+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dybala-Defratyka A, Paneth P, Pu J, Truhlar D (2004) J Phys Chem A 108:2475

    CAS  Google Scholar 

  2. Han K, He G (2007) J Photochem Photobiol C: Photochem Rev 8:55

    CAS  Google Scholar 

  3. Pietrzak M, Shibl M, Broring M, Kuhn O, Limbach H (2007) J Am Chem Soc 129:296

    CAS  PubMed  Google Scholar 

  4. Olsen S, Smith SC (2008) J Am Chem Soc 130:8677

    CAS  PubMed  Google Scholar 

  5. Raymo FM, Bartberger MD, Houk KN, Stoddart JF (2001) J Am Chem Soc 123:9264

    CAS  PubMed  Google Scholar 

  6. Cramer CJ, Truhlar DG (2008) Acc Chem Res 41:760

    CAS  PubMed  Google Scholar 

  7. Zhao G, Han K (2007) J Phys Chem A 111:2469

    CAS  PubMed  Google Scholar 

  8. Zhao G, Liu J, Zhou L, Han K (2007) J Phys Chem B 111:8940

    CAS  PubMed  Google Scholar 

  9. Zhao G, Northrop B, Stang P, Han K (2010) J Phys Chem 114:3418

    CAS  Google Scholar 

  10. Zhao G, Han K (2010) Phys Chem Chem Phys 12:8914

    CAS  PubMed  Google Scholar 

  11. Zhao G, Han K (2012) Acc Chem Res 45:404

    CAS  PubMed  Google Scholar 

  12. Kungwan N, Kerdpol K, Daengngern R, Hannongbua S (2014) Barbatti M 133:1480

    Google Scholar 

  13. Savarese M, Brémond É, Adamo C, Rega N, Ciofini I (2016) Chem Phys Chem 17:1530

    CAS  PubMed  Google Scholar 

  14. Wilbraham L, Savarese M, Rega N, Adamo C, Ciofini I (2015) J Phys Chem B 119:2459

    CAS  PubMed  Google Scholar 

  15. Rini M, Magnes BZ, Pines E, Nibbering ETJ (2003) Science 301:349

    CAS  PubMed  Google Scholar 

  16. Siwick BJ, Bakker HJ (2007) J Am Chem Soc 129:13412

    CAS  PubMed  Google Scholar 

  17. Savarese M, Netti PA, Adamo C, Rega N, Ciofini I (2013) J Phys Chem B 117:16165

    CAS  PubMed  Google Scholar 

  18. Wang Y, Liu W, Tang L, Oscar B, Han F, Fang C (2013) J Phys Chem A 117:6024

    CAS  PubMed  Google Scholar 

  19. Raucci U, Savarese M, Adamo C, Ciofini I, Rega N (2015) J Phys Chem B 119:2650

    CAS  PubMed  Google Scholar 

  20. Petrone A, Cimino P, Donati G, Hratchian HP, Frisch MJ, Rega N (2016) J Chem Theory Comput 12:4925

    CAS  PubMed  Google Scholar 

  21. Zhou PW, Han KL (2018) Acc Chem Res 51:1681

    CAS  PubMed  Google Scholar 

  22. Chiariello MG, Rega N (2018) J Phys Chem A 122:2884

    CAS  PubMed  Google Scholar 

  23. Donati G, Petrone A, Caruso P, Rega Nadia (2018) Chem Sci 9: 1126

  24. Amoruso G, Taylor VCA, Duchi M, Goodband E, Oliver TAA (2019) J Phys Chem B 123:4745

    CAS  PubMed  Google Scholar 

  25. Negreie M, Bellefeuille SM, Whitham S, Petrich JW, Thornburg RW (1990) J Am Chem Soc 112:7419

    Google Scholar 

  26. Smirnov AS, English DS, Rich RL, Lane J, Teyton L, Schwabacher AW, Luo S, Thornburg RW, Petrich JW (1997) J Phys Chem B 101:2758

    CAS  Google Scholar 

  27. Negrerie M, Gai F, Bellefeuille SM, Petrich JW (1991) J Phys Chem 95:8663

    CAS  Google Scholar 

  28. Douhal A, Kim SK, Zewail AH (1995) Nature 378:260

    CAS  PubMed  Google Scholar 

  29. Chachisvilis M, Fiebig T, Douhal A, Zewail AH (1998) J Phys Chem A 102:669

    CAS  Google Scholar 

  30. Fiebig T, Chachisvilis M, Manger M, Zewail AH, Douhal A, Garcia-Ochoa I, de La Hoz AA (1999) J Phys Chem A 103:7419

    CAS  Google Scholar 

  31. Moreno M, Douhal A, Lluch JM (2001) J Phys Chem A 105:3887

    CAS  Google Scholar 

  32. Guallar V, Batista VS, Miller WH (1999) J Chem Phys 110:9922

    CAS  Google Scholar 

  33. Kwon OH, Zewail AH (2007) Proc Natl Acad Sci USA 104:8703

    CAS  PubMed  Google Scholar 

  34. Takeuchi S, Tahara T (1998) J Phys Chem A 102:7740

    CAS  Google Scholar 

  35. Catalán J, Prez P, del Valle JC, de Paz JLG, Kasha M (2002) Proc Natl Acad Sci USA 99:5799

    PubMed  Google Scholar 

  36. Catalán J, Prez P, del Valle JC, de Paz JLG, Kasha M (2004) Proc Natl Acad Sci USA 101:419

    PubMed  Google Scholar 

  37. Sakota K, Hara A, Sekiya H (2004) Phys Chem Chem Phys 6:32

    CAS  Google Scholar 

  38. Sakota K, Sekiya H (2005) J Phys Chem A 109:2718

    CAS  PubMed  Google Scholar 

  39. Sakota K, Sekiya H (2005) J Phys Chem A 109:2722

    CAS  PubMed  Google Scholar 

  40. Sakota K, Okabe C, Nishi N, Sekiya H (2005) J Phys Chem A 109:5245

    CAS  PubMed  Google Scholar 

  41. Catalän J, de Paz JLG (2005) J Chem Phys 123:114302

    PubMed  Google Scholar 

  42. Takeuchi S, Tahara T (2007) Proc Natl Acad Sci USA 104:5285

    CAS  PubMed  Google Scholar 

  43. Folmer DE, Wisniewski ES, Stairs JR, Castleman AW Jr (2000) J Phys Chem A 104:10545

    CAS  Google Scholar 

  44. Schowen RL (1997) Angew Chem Int Ed 36:1434

    CAS  Google Scholar 

  45. Kwon OH, Lee YS, Park HJ, Kim Y, Jang DJ (2004) Angew Chem Int Ed 43:5792

    CAS  Google Scholar 

  46. Avouris P, Yang LL, El-Bayoumi MA (1976) Photochem Photobiol 24:211

    CAS  Google Scholar 

  47. Collins ST (1983) J Phys Chem 87:3202

    CAS  Google Scholar 

  48. Chou PT, Martinez ML, Cooper WC, McMorrow D, Collin ST, Kasha M (1992) J Phys Chem 96:5203

    CAS  Google Scholar 

  49. Chapman CF, Maroncelli M (1992) J Phys Chem 96:8430

    CAS  Google Scholar 

  50. Chen Y, Rich RL, Gai F, Petrich JW (1993) J Phys Chem 97:1770

    CAS  Google Scholar 

  51. Ross JB, Szabo AG, Hogue CW (1997) Methods Enzymol 278:151

    CAS  PubMed  Google Scholar 

  52. Rich RL, Smirnov AV, Schwabacher AW, Petrich JW (1995) J Am Chem Soc 117:11850

    CAS  Google Scholar 

  53. Hoesl MG, Larregola M, Cui H, Budisa N (2010) J Pept Sci 16:589

    CAS  PubMed  Google Scholar 

  54. Chen Y, Gai F, Petrich JW (1994) J Phys Chem 98:2203

    CAS  Google Scholar 

  55. Shen JY, Chao WC, Liu C, Pan HA, Yang HC, Chen CL, Lan YK, Lin LJ, Wang JS, Lu JF, Chou SCW, Tang KC, Chou PT (2013) Nat Commun 4:2611

    PubMed  Google Scholar 

  56. Chou PT, Chi Y (2007) Chem Eur J 13:380

    CAS  PubMed  Google Scholar 

  57. Liu Y, Tang Z, Wang Y, Tian J, Fei X, Cao F, Li GU (2017) Spec Acta A Mol Biomol Spec 187:163

    CAS  Google Scholar 

  58. Fang H (2019) Spec Acta A Mol Biomol Spec 214:152

    CAS  Google Scholar 

  59. Chen KY, Hsieh CC, Cheng YM, Lai CH, Chou PT (2006) Chem Commun 13:4395

    Google Scholar 

  60. Hsieh CC, Cheng YM, Hsu CJ, Chen KY, Chou PT (2008) J Phys Chem A 112:8323

    CAS  PubMed  Google Scholar 

  61. Hristova S, Dobrikov G, Kamounah FS, Kawauchi S, Hansen PE, Deneva V, Nedeltcheva D, Antonov L (2015) RSC Adv 5:102495

    CAS  Google Scholar 

  62. Li CZ, Yang YG, Ma C, Liu YF (2016) RSC Adv 6:5134

    CAS  Google Scholar 

  63. Marciniak H, Hristova S, Deneva V, Kamounah FS, Hansen PE, Lochbrunner S, Antonov L (2017) Phys Chem Chem Phys 19:26621

    CAS  PubMed  Google Scholar 

  64. Yi JC, Fang H (2018) Struct Chem 29:1341

    CAS  Google Scholar 

  65. Frisch MJ, Truck GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Rev. D01, Gaussian, Inc, Wallingford CT.

  66. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    CAS  Google Scholar 

  67. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Google Scholar 

  68. Cossi M, Barone V, Mennucci B (1998) Chem Phys Lett 286:253

    CAS  Google Scholar 

  69. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151

    CAS  Google Scholar 

  70. Tanner C, Manca C, Leutwyler S (2003) Science 302:1736

    CAS  PubMed  Google Scholar 

  71. Fang WH (1999) J Am Chem Soc 103:5567

    CAS  Google Scholar 

  72. Tanner C, Manca C, Leutwyler S (2005) J Chem Phys 122:204326

    PubMed  Google Scholar 

  73. Ashfold MNR, Cronin B, Devine AL, Dixon RN, Nix MGD (2006) Science 312:1637

    CAS  PubMed  Google Scholar 

  74. Mohammed OF, Pines D, Nibbering ETJ, Pines E (2007) Angew Chem Int Ed 46:1458

    CAS  Google Scholar 

  75. Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165

    CAS  Google Scholar 

  76. Limbach HH, Pietrzak M, Benedict H, Tolstoy PM, Golubev NS, Denisov GS (2004) J Mol Struct 706:115

    CAS  Google Scholar 

  77. Limbach HH, Lopez JM, Kohen A (2006) Philos Trans R Soc B 361:1399

    CAS  Google Scholar 

  78. Limbach HH (2007) In hydrogen-transfer reactions. Schowen RL, Klinman JP, Hynes JT, Limbach HH (eds). Wiley, Weinheim, Chapter 6, pp 135–221.

  79. Brown ID (1992) Acta Cryst B 48:553

    Google Scholar 

  80. Dos A, Schimming V, Tosoni S, Limbach HH (2008) J Phys Chem B 112:15604

    CAS  PubMed  Google Scholar 

  81. Garrett BC, Truhlar DG (1979) J Am Chem Soc 101:4534

    CAS  Google Scholar 

  82. Johnston HS (1966) Gas phase reaction rate theory. Ronald Press, New York, pp 1–362

    Google Scholar 

  83. Limbach HH, Schowen KB, Schowen RL (2010) J Phys Org Chem 23:586

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, H. A theoretical study on water-assisted excited state double proton transfer process in substituted 2,7-diazaindole-H2O complex. Theor Chem Acc 139, 139 (2020). https://doi.org/10.1007/s00214-020-02655-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02655-3

Keywords

Navigation