Abstract
Does the optically bright \(B_2(\pi \rightarrow \pi ^*)\) transition in pyrrole correspond to an inter-valence or to a mixed valence–Rydberg transition? State-of-the-art electronic structure methods provide inconclusive results and relegate the answer to future time-resolved photoelectron spectroscopy experiments. Here, benchmark calculations of photoionization cross sections, asymmetry parameters and molecular frame photoelectron angular distributions (MFPADs) have been performed with the aim of discerning between the two types of transitions. In particular, we show that MFPADs are very sensitive probes of the electronic wave function and that accurate experimental MFPADs could be used to identify the electronic character of the \(B_2\) state.
This is a preview of subscription content, access via your institution.





References
Sobolewski AL, Domcke W (2000) Chem. Phys. 259:181
Sobolewski AL, Domcke W, Dedonder-Lardeux C, Jouvet C (2002) Phys. Chem. Chem. Phys. 4(7):1093
Ashfold M, Cronin B, Devine AL, Dixon R, Nix MGD (2006) Science 312:1637
Wei J, Kuczmann A, Riedel J, Renth F, Temps F (2003) Phys. Chem. Chem. Phys. 5:315
Lippert H, Ritze HH, Hertel IV, Radloff W (2004) ChemPhysChem 5(9):1423
Cronin B, Nix MGD, Qadiri RH, Ashfold MNR (2004) Phys. Chem. Chem. Phys. 6:5031
Cronin B, Devine AL, Nix MGD, Ashfold MNR (2006) Phys. Chem. Chem. Phys. 8:3440
Roberts GM, Williams CA, Yu H, Chatterley AS, Young JD, Ullrich S, Stavros VG (2013) Faraday Discuss. 163:95
Wu G, Neville SP, Schalk O, Sekikawa T, Ashfold MNR, Worth GA, Stolow A (2015) J. Chem. Phys. 142:074302/1
Horton SL, Liu Y, Chakraborty P, Matsika S, Weinacht T (2017) J. Chem. Phys. 146:064306/1
Geng T, Schalk O, Neville SP, Hansson T, Thomas RD (2017) J. Chem. Phys. 146:144307/1
Kirkby OM, Parkes MA, Neville SP, Worth GA, Fielding HH (2017) Chem. Phys. Lett. 683:179
Roos BO, Malmqvist PA, Molina V, Serrano-Andrés L, Merchán M (2002) J. Chem. Phys. 116(17):7526
Celani P, Werner HJ (2003) J. Chem. Phys 119:5044
Vallet V, Lan Z, Mahapatra S, Sobolewski AL, Domcke W (2004) Faraday Discuss. 127:283
Vallet V, Lan Z, Mahapatra S, Sobolewski AL, Domcke W (2005) J. Chem. Phys. 123:144307/1
Barbatti M, Vazdar M, Aquino AJA, Eckert-Maksić M, Lischka H (2006) J. Chem. Phys. 125:164323/1
Frank I, Damianos K (2007) J. Chem. Phys. 126:125105/1
Vazdar M, Eckert-Maksić M, Barbatti M, Lischka H (2009) Mol. Phys. 107:845
Barbatti M, Pittner J, Pederzoli M, Werner U, Mitrić R, Bonačić-Koutecký V, Lischka H (2010) Chem. Phys. 375:26
Faraji S, Vazdar M, Reddy VS, Eckert-Maksić M, Lischka H, Köppel H (2011) J. Chem. Phys. 135:154310/1
Neville SP, Worth GA (2014) J. Chem. Phys. 140:034317/1
Sapunar M, Ponzi A, Chaiwongwattana S, Mališ M, Prlj A, Decleva P, Došlić N (2015) Phys. Chem. Chem. Phys. 17:19012
Makhov DV, Saita K, Martinez TJ, Shalashilin DV (2015) Phys. Chem. Chem. Phys. 17:3316
Nandipati KR, Lan Z, Singh H, Mahapatra S (2017) J. Chem. Phys. 146:214304/1
Picconi D, Grebenshchikov SY (2018) J. Chem. Phys. 148:104103/1
Picconi D, Grebenshchikov SY (2018) J. Chem. Phys. 148:104104/1
Heindl M, González L (2019) Comput. Theor. Chem. 1155:38
Lamas I, Longarte A, Conde AP, Muga G, Townsend D, Montero R (2019) J. Chem. Phys. A 123:8982
Andersson K, Malmqvist PA, Roos BO (1992) J. Chem. Phys. 96:1218
Roos BO, Andersson K, Fülscher MP, Malmqvist PA, Serrano-Andrés L, Pierloot K, Merchán M (1996) In: Prigogine I, Rice SA (eds) Advances in Chemical Physics: New Methods in Computational Quantum Mechanics. Wiley, New York, pp 219–331
Cederbaum LS, Köppel H, Domcke W (1981) Int. J. Quant. Chem. 20:251
Beck MH, Jäckle A, Worth G, Meyer HD (2000) Phys. Rep. 324:1
Barbatti M, Sen K (2016) Int. J. Quant. Chem. 116:762
Sapunar M, Piteša T, Davidović D, Došlić N (2019) J. Chem. Theory Comput. 15:3461
Tully JC (1990) J. Chem. Phys. 93:1061
Schirmer J (1982) Phys. Rev. A 26:2395
Dreuw A, Wormit M (2015) Wiley Interdiscip. Rev. Comput. Mol. 5:82
Shiozaki T, Gyorffy W, Celani P, Werner HJ (2011) J. Chem. Phys. 135:081106
Vlaisavljevich B, Shiozaki T (2016) J. Chem. Theory Comput. 12:3781–3787
Park JW, Shiozaki T (2017) J. Chem. Theory Comput. 13:2561
Ponzi A, Angeli C, Cimiraglia R, Coriani S, Decleva P (2014) J. Chem. Phys. 140:204304
Ponzi A, Sapunar M, Angeli C, Cimiraglia R, Došlić N, Decleva P (2016) J. Chem. Phys. 144:8
TURBOMOLE V7.0 2015, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, 2007
Toffoli D, Stener M, Fronzoni G, Decleva P (2002) Chem. Phys. 276:25
te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J. Comput. Chem. 22:931
Fischer CF, Idrees M (1989) Comput. Phys. 3:53
Brosolo M, Decleva P, Lisini A (1992) Comput. Phys. Commun. 71:207
Chandra N (1987) J. Phys. B At. Mol. Phys. 20:3405
Leeuwen RV, Baerends J (1994) Phys. Rev. A 49:2421
Stener M, Furlan S, Decleva P (2000) J. Phys. B At. Mol. Opt. Phys. 33:1081
Holland D, Karlsson L, von Niessen W (2001) J. Electron Spectrosc. 113:221
Butscher W, Thunemann KH (1978) Chem. Phys. Lett. 57:2
Acknowledgements
This research has been supported by the Croatian Science Foundation under the Grant HRZZ IP-2016-06-1142.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Published as part of the topical collection of articles from the 17th edition of the Central European Symposium on Theoretical Chemistry (CESTC 2019) in Austria.
Rights and permissions
About this article
Cite this article
Ponzi, A., Sapunar, M., Došlić, N. et al. Photoionization of pyrrole from the \(B_2\) state: a computational study on the effects of Rydberg–valence mixing. Theor Chem Acc 139, 137 (2020). https://doi.org/10.1007/s00214-020-02649-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00214-020-02649-1
Keywords
- Pyrrole
- Photoionization
- Photodynamics
- Valence–Rydberg character
- Dyson orbitals
- MFPAD