Skip to main content
Log in

Photoionization of pyrrole from the \(B_2\) state: a computational study on the effects of Rydberg–valence mixing

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Does the optically bright \(B_2(\pi \rightarrow \pi ^*)\) transition in pyrrole correspond to an inter-valence or to a mixed valence–Rydberg transition? State-of-the-art electronic structure methods provide inconclusive results and relegate the answer to future time-resolved photoelectron spectroscopy experiments. Here, benchmark calculations of photoionization cross sections, asymmetry parameters and molecular frame photoelectron angular distributions (MFPADs) have been performed with the aim of discerning between the two types of transitions. In particular, we show that MFPADs are very sensitive probes of the electronic wave function and that accurate experimental MFPADs could be used to identify the electronic character of the \(B_2\) state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sobolewski AL, Domcke W (2000) Chem. Phys. 259:181

    CAS  Google Scholar 

  2. Sobolewski AL, Domcke W, Dedonder-Lardeux C, Jouvet C (2002) Phys. Chem. Chem. Phys. 4(7):1093

    CAS  Google Scholar 

  3. Ashfold M, Cronin B, Devine AL, Dixon R, Nix MGD (2006) Science 312:1637

    CAS  PubMed  Google Scholar 

  4. Wei J, Kuczmann A, Riedel J, Renth F, Temps F (2003) Phys. Chem. Chem. Phys. 5:315

    CAS  Google Scholar 

  5. Lippert H, Ritze HH, Hertel IV, Radloff W (2004) ChemPhysChem 5(9):1423

    CAS  PubMed  Google Scholar 

  6. Cronin B, Nix MGD, Qadiri RH, Ashfold MNR (2004) Phys. Chem. Chem. Phys. 6:5031

    CAS  Google Scholar 

  7. Cronin B, Devine AL, Nix MGD, Ashfold MNR (2006) Phys. Chem. Chem. Phys. 8:3440

    CAS  PubMed  Google Scholar 

  8. Roberts GM, Williams CA, Yu H, Chatterley AS, Young JD, Ullrich S, Stavros VG (2013) Faraday Discuss. 163:95

    CAS  PubMed  Google Scholar 

  9. Wu G, Neville SP, Schalk O, Sekikawa T, Ashfold MNR, Worth GA, Stolow A (2015) J. Chem. Phys. 142:074302/1

    CAS  Google Scholar 

  10. Horton SL, Liu Y, Chakraborty P, Matsika S, Weinacht T (2017) J. Chem. Phys. 146:064306/1

    CAS  Google Scholar 

  11. Geng T, Schalk O, Neville SP, Hansson T, Thomas RD (2017) J. Chem. Phys. 146:144307/1

    CAS  Google Scholar 

  12. Kirkby OM, Parkes MA, Neville SP, Worth GA, Fielding HH (2017) Chem. Phys. Lett. 683:179

    CAS  Google Scholar 

  13. Roos BO, Malmqvist PA, Molina V, Serrano-Andrés L, Merchán M (2002) J. Chem. Phys. 116(17):7526

    CAS  Google Scholar 

  14. Celani P, Werner HJ (2003) J. Chem. Phys 119:5044

    CAS  Google Scholar 

  15. Vallet V, Lan Z, Mahapatra S, Sobolewski AL, Domcke W (2004) Faraday Discuss. 127:283

    CAS  PubMed  Google Scholar 

  16. Vallet V, Lan Z, Mahapatra S, Sobolewski AL, Domcke W (2005) J. Chem. Phys. 123:144307/1

    CAS  Google Scholar 

  17. Barbatti M, Vazdar M, Aquino AJA, Eckert-Maksić M, Lischka H (2006) J. Chem. Phys. 125:164323/1

    CAS  Google Scholar 

  18. Frank I, Damianos K (2007) J. Chem. Phys. 126:125105/1

    CAS  Google Scholar 

  19. Vazdar M, Eckert-Maksić M, Barbatti M, Lischka H (2009) Mol. Phys. 107:845

    CAS  Google Scholar 

  20. Barbatti M, Pittner J, Pederzoli M, Werner U, Mitrić R, Bonačić-Koutecký V, Lischka H (2010) Chem. Phys. 375:26

    CAS  Google Scholar 

  21. Faraji S, Vazdar M, Reddy VS, Eckert-Maksić M, Lischka H, Köppel H (2011) J. Chem. Phys. 135:154310/1

    CAS  Google Scholar 

  22. Neville SP, Worth GA (2014) J. Chem. Phys. 140:034317/1

    CAS  Google Scholar 

  23. Sapunar M, Ponzi A, Chaiwongwattana S, Mališ M, Prlj A, Decleva P, Došlić N (2015) Phys. Chem. Chem. Phys. 17:19012

    CAS  PubMed  Google Scholar 

  24. Makhov DV, Saita K, Martinez TJ, Shalashilin DV (2015) Phys. Chem. Chem. Phys. 17:3316

    CAS  PubMed  Google Scholar 

  25. Nandipati KR, Lan Z, Singh H, Mahapatra S (2017) J. Chem. Phys. 146:214304/1

    CAS  Google Scholar 

  26. Picconi D, Grebenshchikov SY (2018) J. Chem. Phys. 148:104103/1

    CAS  Google Scholar 

  27. Picconi D, Grebenshchikov SY (2018) J. Chem. Phys. 148:104104/1

    CAS  Google Scholar 

  28. Heindl M, González L (2019) Comput. Theor. Chem. 1155:38

    CAS  Google Scholar 

  29. Lamas I, Longarte A, Conde AP, Muga G, Townsend D, Montero R (2019) J. Chem. Phys. A 123:8982

    CAS  Google Scholar 

  30. Andersson K, Malmqvist PA, Roos BO (1992) J. Chem. Phys. 96:1218

    CAS  Google Scholar 

  31. Roos BO, Andersson K, Fülscher MP, Malmqvist PA, Serrano-Andrés L, Pierloot K, Merchán M (1996) In: Prigogine I, Rice SA (eds) Advances in Chemical Physics: New Methods in Computational Quantum Mechanics. Wiley, New York, pp 219–331

  32. Cederbaum LS, Köppel H, Domcke W (1981) Int. J. Quant. Chem. 20:251

    Google Scholar 

  33. Beck MH, Jäckle A, Worth G, Meyer HD (2000) Phys. Rep. 324:1

    CAS  Google Scholar 

  34. Barbatti M, Sen K (2016) Int. J. Quant. Chem. 116:762

    CAS  Google Scholar 

  35. Sapunar M, Piteša T, Davidović D, Došlić N (2019) J. Chem. Theory Comput. 15:3461

    CAS  PubMed  Google Scholar 

  36. Tully JC (1990) J. Chem. Phys. 93:1061

    CAS  Google Scholar 

  37. Schirmer J (1982) Phys. Rev. A 26:2395

    CAS  Google Scholar 

  38. Dreuw A, Wormit M (2015) Wiley Interdiscip. Rev. Comput. Mol. 5:82

    CAS  Google Scholar 

  39. Shiozaki T, Gyorffy W, Celani P, Werner HJ (2011) J. Chem. Phys. 135:081106

    PubMed  Google Scholar 

  40. Vlaisavljevich B, Shiozaki T (2016) J. Chem. Theory Comput. 12:3781–3787

    CAS  PubMed  Google Scholar 

  41. Park JW, Shiozaki T (2017) J. Chem. Theory Comput. 13:2561

    CAS  PubMed  Google Scholar 

  42. Ponzi A, Angeli C, Cimiraglia R, Coriani S, Decleva P (2014) J. Chem. Phys. 140:204304

    PubMed  Google Scholar 

  43. Ponzi A, Sapunar M, Angeli C, Cimiraglia R, Došlić N, Decleva P (2016) J. Chem. Phys. 144:8

    Google Scholar 

  44. TURBOMOLE V7.0 2015, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, 2007

  45. Toffoli D, Stener M, Fronzoni G, Decleva P (2002) Chem. Phys. 276:25

    CAS  Google Scholar 

  46. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J. Comput. Chem. 22:931

    Google Scholar 

  47. Fischer CF, Idrees M (1989) Comput. Phys. 3:53

    Google Scholar 

  48. Brosolo M, Decleva P, Lisini A (1992) Comput. Phys. Commun. 71:207

    CAS  Google Scholar 

  49. Chandra N (1987) J. Phys. B At. Mol. Phys. 20:3405

    CAS  Google Scholar 

  50. Leeuwen RV, Baerends J (1994) Phys. Rev. A 49:2421

    PubMed  Google Scholar 

  51. Stener M, Furlan S, Decleva P (2000) J. Phys. B At. Mol. Opt. Phys. 33:1081

    CAS  Google Scholar 

  52. Holland D, Karlsson L, von Niessen W (2001) J. Electron Spectrosc. 113:221

    CAS  Google Scholar 

  53. Butscher W, Thunemann KH (1978) Chem. Phys. Lett. 57:2

    Google Scholar 

Download references

Acknowledgements

This research has been supported by the Croatian Science Foundation under the Grant HRZZ IP-2016-06-1142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Ponzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the topical collection of articles from the 17th edition of the Central European Symposium on Theoretical Chemistry (CESTC 2019) in Austria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponzi, A., Sapunar, M., Došlić, N. et al. Photoionization of pyrrole from the \(B_2\) state: a computational study on the effects of Rydberg–valence mixing. Theor Chem Acc 139, 137 (2020). https://doi.org/10.1007/s00214-020-02649-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02649-1

Keywords

Navigation