Skip to main content
Log in

Molecular modeling of MCPA herbicide adsorption by goethite (110) surface in dependence of pH

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The sorption mechanism between 4-chloro-2-methylphenoxyacetic acid (MCPA) herbicide and the dominating (110) surface of the mineral goethite was studied by molecular modeling of the full set of possible surface complexes using density functional theory with periodic boundary conditions for the structural surface models. The most stable arrangements of the MCPA species were predicted taking into account the type and topology of the surface OH groups, protonation states (pH effect), the structure of carboxyl/carboxylate group of MCPA, and the binding type (outer- or inner-sphere complexes). Acid–base properties of MCPA and the goethite surface OH groups led to creation of several pH ranges (3–4, 4–9, 9) for combining neutral/deprotonated MCPA with neutral/protonated goethite surface. The predicted strongest adsorption (physisorption) for the complexes in the pH 4–9 range was followed by largest solvent destabilization of the outer-sphere complexes due to the high solvent energy of the MCPA and surface hydration of the hydroxylated goethite surface. In line with experimental data, the adsorption of MCPA should increase with decreasing pH owing to the presence of neutral MCPA molecule (pKa ~ 3) and its lower solvation energy that can produce more stable complexes in solution than that of anionic MCPA in pH 4–9 range. The formation of the inner-sphere chemisorbed surface complex contributes significantly to the overall adsorption of MCPA at acidic pH range. In the chemisorbed inner-sphere complexes, monodentate binding was revealed through the formation of a Fe–O–C bridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Walker M, Lawrence H (1992) EPA's pesticide fact sheet database. Lewis Publishers Inc., Chelsea

    Google Scholar 

  2. Haberhauer G, Pfeiffer L, Gerzabek MH (2000) Influence of molecular structure on sorption of phenoxyalkanoic herbicides on soil and its particle size fractions. J Agric Food Chem 48(8):3722–3727. https://doi.org/10.1021/jf9912856

    Article  CAS  PubMed  Google Scholar 

  3. Haberhauer G, Pfeiffer L, Gerzabek MH, Kirchmann H, Aquino AJA, Tunega D, Lischka H (2001) Response of sorption processes of MCPA to the amount and origin of organic matter in a long-term field experiment. Eur J Soil Sci 52(2):279–286. https://doi.org/10.1046/j.1365-2389.2001.00382.x

    Article  CAS  Google Scholar 

  4. Socias-Viciana MH, Fernandez-Perez M, Villafranca-Sanchez R, Gonzalez-Pradas E, Flores-Cespedes F (1999) Sorption and leaching of atrazine and MCPA in natural and peat-amended calcareous soils from Spain. J Agric Food Chem 47(3):1236–1241. https://doi.org/10.1021/jf980799m

    Article  CAS  PubMed  Google Scholar 

  5. Clausen L, Fabricius I (2001) Atrazine, isoproturon, mecoprop, 2,4-D, and bentazone adsorption onto iron oxides. J Environ Qual 30(3):858–869. https://doi.org/10.2134/jeq2001.303858x

    Article  CAS  PubMed  Google Scholar 

  6. Inacio J, Taviot-Gueho C, Forano C, Besse JP (2001) Adsorption of MCPA pesticide by MgAl-layered double hydroxides. Appl Clay Sci 18(5–6):255–264. https://doi.org/10.1016/s0169-1317(01)00029-1

    Article  CAS  Google Scholar 

  7. Vasudevan D, Cooper EM, Van Exem OL (2002) Sorption-desorption of lonogenic compounds at the mineral-water interface: study of metal oxide-rich soils and pure-phase minerals. Environ Sci Technol 36(3):501–511. https://doi.org/10.1021/Es0109390

    Article  CAS  PubMed  Google Scholar 

  8. Thorstensen CW, Lode O (2001) Laboratory degradation studies of bentazone, dichlorprop, MCPA, and propiconazole in Norwegian soils. J Environ Qual 30(3):947–953. https://doi.org/10.2134/jeq2001.303947x

    Article  CAS  PubMed  Google Scholar 

  9. Pignatello JJ, Xing BS (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30(1):1–11. https://doi.org/10.1021/Es940683g

    Article  CAS  Google Scholar 

  10. Benoit P, Barriuso E, Calvet R (1998) Biosorption characterization of herbicides, 2,4-D and atrazine, and two chlorophenols on fungal mycelium. Chemosphere 37(7):1271–1282. https://doi.org/10.1016/S0045-6535(98)00125-8

    Article  CAS  Google Scholar 

  11. Bolan NS, Baskaran S (1996) Biodegradation of 2,4-D herbicide as affected by its adsorption–desorption behaviour and microbial activity of soils. Aust J Soil Res 34(6):1041–1053. https://doi.org/10.1071/Sr9961041

    Article  CAS  Google Scholar 

  12. DePaolis F, Kukkonen J (1997) Binding of organic pollutants to humic and fulvic acids: Influence of pH and the structure of humic material. Chemosphere 34(8):1693–1704. https://doi.org/10.1016/S0045-6535(97)00026-X

    Article  CAS  Google Scholar 

  13. Sannino F, Violante A, Gianfreda L (1997) Adsorption-desorption of 2,4-D by hydroxy aluminium montmorillonite complexes. Pestic Sci 51(4):429–435. https://doi.org/10.1002/(sici)1096-9063(199712)51:4<429:aid-ps619>3.0.co;2-j

    Article  CAS  Google Scholar 

  14. Susarla S, Bhaskar GV, Bhamidimarri SMR (1997) Competitive adsorption-desorption kinetics of phenoxyacetic acids and a chlorophenol in volcanic soil. Environ Technol 18(9):937–943. https://doi.org/10.1080/09593331808616613

    Article  CAS  Google Scholar 

  15. Celis R, Hermosin MC, Cox L, Cornejo J (1999) Sorption of 2,4-dichlorophenoxyacetic acid by model particles simulating naturally occurring soil colloids. Environ Sci Technol 33(8):1200–1206. https://doi.org/10.1021/es980659t

    Article  CAS  Google Scholar 

  16. Cox L, Celis R, Hermosin MC, Cornejo J (2000) Natural soil colloids to retard simazine and 2,4-d leaching in soil. J Agric Food Chem 48(1):93–99. https://doi.org/10.1021/Jf990585k

    Article  CAS  PubMed  Google Scholar 

  17. Spadotto CA, Hornsby AG (2003) Soil sorption of acidic pesticides: modeling pH effects. J Environ Qual 32(3):949–956. https://doi.org/10.2134/jeq2003.9490

    Article  CAS  PubMed  Google Scholar 

  18. Jensen PH, Hansen HCB, Rasmussen J, Jacobsen OS (2004) Sorption-controlled degradation kinetics of MCPA in soil. Environ Sci Technol 38(24):6662–6668. https://doi.org/10.1021/Es0494095

    Article  CAS  PubMed  Google Scholar 

  19. Aquino AJA, Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2007) Quantum chemical adsorption studies on the (110) surface of the mineral goethite. J Phys Chem C 111(2):877–885. https://doi.org/10.1021/Jp0649192

    Article  CAS  Google Scholar 

  20. Tunega D, Gerzabek MH, Haberhauer G, Totsche KU, Lischka H (2009) Model study on sorption of polycyclic aromatic hydrocarbons to goethite. J Colloid Interface Sci 330(1):244–249. https://doi.org/10.1016/j.jcis.2008.10.056

    Article  CAS  PubMed  Google Scholar 

  21. Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2004) Sorption of phenoxyacetic acid herbicides on the kaolinite mineral surface—an ab initio molecular dynamics simulation. Soil Sci 169(1):44–54. https://doi.org/10.1097/01.ss.0000112015.97541.f3

    Article  CAS  Google Scholar 

  22. Tunega D, Gerzabek MH, Haberhauer G, Lischka H (2007) Formation of 2,4-D complexes on montmorillonites—an ab initio molecular dynamics study. Eur J Soil Sci 58(3):680–691. https://doi.org/10.1111/j.1365-2389.2006.00853

    Article  CAS  Google Scholar 

  23. Kersten M, Tunega D, Georgieva I, Vlasova N, Branscheid R (2014) Adsorption of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) by goethite. Environ Sci Technol 48(20):11803–11810. https://doi.org/10.1021/Es502444c

    Article  CAS  PubMed  Google Scholar 

  24. Werner D, Garratt JA, Pigott G (2013) Sorption of 2,4-D and other phenoxy herbicides to soil, organic matter, and minerals. J Soil Sediment 13(1):129–139. https://doi.org/10.1007/s11368-012-0589-7

    Article  CAS  Google Scholar 

  25. Pronk GJ, Heister K, Kogel-Knabner I (2011) Iron oxides as major available interface component in loamy arable topsoils. Soil Sci Soc Am J 75(6):2158–2168. https://doi.org/10.2136/sssaj2010.0455

    Article  CAS  Google Scholar 

  26. Iglesias A, Lopez R, Gondar D, Antelo J, Fiol S, Arce F (2010) Adsorption of MCPA on goethite and humic acid-coated goethite. Chemosphere 78(11):1403–1408. https://doi.org/10.1016/j.chemosphere.2009.12.063

    Article  CAS  PubMed  Google Scholar 

  27. Angove MJ, Fernandes MB, Ikhsan J (2002) The sorption of anthracene onto goethite and kaolinite in the presence of some benzene carboxylic acids. J Colloid Interface Sci 247(2):282–289. https://doi.org/10.1006/jcis.2001.8133

    Article  CAS  PubMed  Google Scholar 

  28. Muller S, Totsche KU, Kogel-Knabner I (2007) Sorption of polycyclic aromatic hydrocarbons to mineral surfaces. Eur J Soil Sci 58(4):918–931. https://doi.org/10.1111/j.1365-2389.2007.00930.x

    Article  CAS  Google Scholar 

  29. Weigand H, Totsche KU (1998) Flow and reactivity effects on dissolved organic matter transport in soil columns. Soil Sci Soc Am J 62(5):1268–1274. https://doi.org/10.2136/sssaj1998.03615995006200050017x

    Article  CAS  Google Scholar 

  30. Gaboriaud F, Ehrhardt J (2003) Effects of different crystal faces on the surface charge of colloidal goethite (alpha-FeOOH) particles: an experimental and modeling study. Geochim Cosmochim Ac 67(5):967–983. https://doi.org/10.1016/S0016-7037(02)00988-2

    Article  CAS  Google Scholar 

  31. Kavanagh BV, Posner AM, Quirk JP (1977) Adsorption of phenoxyacetic acid herbicides on goethite. J Colloid Interface Sci 61(3):545–553. https://doi.org/10.1016/0021-9797(77)90472-6

    Article  CAS  Google Scholar 

  32. Iglesias A, Lopez R, Gondar D, Antelo J, Fiol S, Arce F (2009) Effect of pH and ionic strength on the binding of paraquat and MCPA by soil fulvic and humic acids. Chemosphere 76(1):107–113. https://doi.org/10.1016/j.chemosphere.2009.02.012

    Article  CAS  PubMed  Google Scholar 

  33. Boily JF, Persson P, Sjoberg S (2000) Benzenecarboxylate surface complexation at the goethite (alpha-FeOOH)/water interface: II. Linking IR spectroscopic observations to mechanistic surface complexation models for phthalate, trimellitate, and pyromellitate. Geochim Cosmochim Acta 64(20):3453–3470. https://doi.org/10.1016/S0016-7037(00)00453-1

    Article  CAS  Google Scholar 

  34. Aquino AJA, Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2008) Acid–base properties of a goethite surface model: a theoretical view. Geochim Cosmochim Acta 72(15):3587–3602. https://doi.org/10.1016/j.gca.2008.04.037

    Article  CAS  Google Scholar 

  35. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186. https://doi.org/10.1103/physrevb.54.11169

    Article  CAS  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/physrevlett.77.3865

    Article  CAS  PubMed  Google Scholar 

  37. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  38. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57(3):1505–1509. https://doi.org/10.1103/PhysRevB.57.1505

    Article  CAS  Google Scholar 

  39. Otte K, Pentcheva R, Schmahl WW, Rustad JR (2009) Pressure-induced structural and electronic transitions in FeOOH from first principles. Phys Rev B. https://doi.org/10.1103/Physrevb.80.205116

    Article  Google Scholar 

  40. Tunega D (2012) Theoretical study of properties of goethite (alpha-FeOOH) at ambient and high-pressure conditions. J Phys Chem C 116(11):6703–6713. https://doi.org/10.1021/Jp2091297

    Article  CAS  Google Scholar 

  41. Hazemann JL, Berar JF, Manceau A (1991) Rietveld studies of the aluminum-iron substitution in synthetic goethite. Mater Sci Forum 79:821–826. https://doi.org/10.4028/www.scientific.net/MSF.79-82.821

    Article  Google Scholar 

  42. Bucko T, Hafner J, Angyan JG (2005) Geometry optimization of periodic systems using internal coordinates. J Chem Phys. https://doi.org/10.1063/1.1864932

    Article  PubMed  Google Scholar 

  43. Baker J, Kessi A, Delley B (1996) The generation and use of delocalized internal coordinates in geometry optimization. J Chem Phys 105(1):192–212. https://doi.org/10.1063/1.471864

    Article  CAS  Google Scholar 

  44. Manz TA, Limas NG (2016) Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology. RSC Adv 6(53):47771–47801. https://doi.org/10.1039/C6RA04656H

    Article  CAS  Google Scholar 

  45. Manz T, Limas NG (2017) Chargemol program for performing DDEC analysis. https://ddec.sourceforge.net/. Accessed Aug 2017.

  46. Manz TA (2017) Introducing DDEC6 atomic population analysis: part 3. Comprehensive method to compute bond orders. RSC Adv 7(72):45552–45581. https://doi.org/10.1039/c7ra07400j

    Article  CAS  Google Scholar 

  47. Manz TA, Yang B (2016) Selective oxidation passing through eta(3)-ozone intermediates: applications to direct propene epoxidation using molecular oxygen oxidant (vol 4, pg 27755, 2014). RSC Adv 6(110):108153. https://doi.org/10.1039/C4RA03729D

    Article  CAS  Google Scholar 

  48. Desiraju GR, Steiner T (2001) The weak hydrogen bond in structural chemistry and biology. OUP, Chichester

    Book  Google Scholar 

  49. Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Electronic-structure calculations on workstation computers—the program system turbomole. Chem Phys Lett 162(3):165–169. https://doi.org/10.1016/0009-2614(89)85118-8

    Article  CAS  Google Scholar 

  50. Schafer A, Huber C, Ahlrichs R (1994) Fully optimized contracted gaussian-basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100(8):5829–5835. https://doi.org/10.1063/1.467146

    Article  Google Scholar 

  51. Klamt A, Schuurmann G (1993) Cosmo—a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perk T 2(5):799–805. https://doi.org/10.1039/P29930000799

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support the German Research Foundation (No. GE 1676/1) of priority research program SPP 1315. I.G thanks for the financial support the Bulgarian National Science Fund of Bulgarian Ministry of Education and Science, Grant DH09/9/2016. The authors also acknowledge the technical support and computer time at the Vienna Scientific Computing (VSC) cluster.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivelina Georgieva or Daniel Tunega.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho and Francisco Bolivar Correto Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 6795 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgieva, I., Kersten, M. & Tunega, D. Molecular modeling of MCPA herbicide adsorption by goethite (110) surface in dependence of pH. Theor Chem Acc 139, 132 (2020). https://doi.org/10.1007/s00214-020-02646-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02646-4

Keywords

Navigation