Skip to main content
Log in

Heats of formation for aluminium compounds with EnAt1 and EnAt2

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Enthalpies of formation of twenty-nine compounds of aluminium were calculated employing various density functional theory (DFT) (B3LYP, B2PLYP, LC-wPBE, PBE1PBE, BMK, M06 and M06-2X) and composite methods (EnAt1, EnAt2, G3X-CEP, G3X(CCSD)-CEP and G4), using atomization. The best agreement with experimental data was achieved by using Gn and Gn-CEP multilevel techniques. It was found that the best performance among DFT methods within the atomization approach demonstrated the long range corrected M06-2X level theory. The mean absolute error calculated for EnAt1 and EnAt2, which has recently been reported as a very accurate method for calculating enthalpies of formation, for 248 compounds from the G3/05 test set presented the best results when compared with functional DFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Groent CP, Oskam A, Kovács A (2003) Theoretical study of mixed MLaX4 (M = Na, K, Cs; X = F, Cl, Br, I) rare earth/alkali metal halide complexes. Inorg Chem 42:851–858. https://doi.org/10.1021/ic0260973

    Article  CAS  Google Scholar 

  2. Laghrissi A, Salmani EM, Dehmani M et al (2016) Ab initio calculations of exchange interactions, Magnetic and optical properties of (Cu, TM)AlO2 (TM: Ti, V, Cr, Mn and Fe,): LDA and SIC approximation. Optik (Stuttg) 127:6991–6996. https://doi.org/10.1016/j.ijleo.2016.05.024

    Article  CAS  Google Scholar 

  3. Yang J, Liang F, Cheng Y et al (2019) Improvement of dehydrogenation performance by adding CeO2 to α-AlH3. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2019.11.086

    Article  Google Scholar 

  4. Luo Z, Lei W, Wang X et al (2020) AlF3 coating as sulfur immobilizers in cathode material for high performance lithium-sulfur batteries. J Alloys Compd 812:152132. https://doi.org/10.1016/j.jallcom.2019.152132

    Article  CAS  Google Scholar 

  5. Wu H, Chen L, Zhu F et al (2020) The dynamic development of bacterial community following long-term weathering of bauxite residue. J Environ Sci (China) 90:321–330. https://doi.org/10.1016/j.jes.2019.12.001

    Article  Google Scholar 

  6. Shunmugasundaram M, Praveen Kumar A, Ponraj Sankar L, Sivasankar S (2020) Experimental investigation and process parameters optimization of stir cast aluminium metal matrix composites to improve material removal rate. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.01.128

    Article  Google Scholar 

  7. Zhang CQ, Liu W (2019) Non-parabolic Al3Ti intermetallic layer growth on aluminum-titanium interface at low annealing temperatures. Mater Lett 256:126624. https://doi.org/10.1016/j.matlet.2019.126624

    Article  CAS  Google Scholar 

  8. Kumar Chauhan P, Khan S (2019) Microstructural examination of aluminium-copper functionally graded material developed by powder metallurgy route. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.10.007

    Article  Google Scholar 

  9. Carey WC, Dixon DG, McDonnell JAM (1985) Space shuttle microabrasion foil experiment (MFE): implications for aluminium oxide sphere contamination of near-earth space. Adv Sp Res 5:87–90. https://doi.org/10.1016/0273-1177(85)90390-4

    Article  CAS  Google Scholar 

  10. Wu C, Wang B, Wu N et al (2020) Molecular-scale understanding on the structure evolution from melamine diborate supramolecule to boron nitride fibers. Ceram Int 46:1083–1090. https://doi.org/10.1016/j.ceramint.2019.09.075

    Article  CAS  Google Scholar 

  11. Curtiss LA, Redfern PC, Raghavachari K (2005) Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies. J Chem Phys. https://doi.org/10.1063/1.2039080

    Article  PubMed  Google Scholar 

  12. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys. https://doi.org/10.1063/1.2436888

    Article  PubMed  Google Scholar 

  13. Pereira DH, Ramos AF, Morgon NH, Custodio R (2011) Implementation of pseudopotential in the G3 theory for molecules containing first-, second-, and non-transition third-row atoms. J Chem Phys. https://doi.org/10.1063/1.3609241

    Article  PubMed  Google Scholar 

  14. Pereira DH, Ramos AF, Morgon NH, Custodio R (2013) Erratum: “Implementation of pseudopotential in the G3 theory for molecules containing first-, second-, and non-transition third-row atoms” [J. Chem. Phys. 135, 034106 (2011)]. J Chem Phys 135:219901. https://doi.org/10.1063/1.3666235

    Article  CAS  Google Scholar 

  15. Stevens WJ, Basch H, Krauss M (1984) Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. J Chem Phys 81:6026–6033. https://doi.org/10.1063/1.447604

    Article  Google Scholar 

  16. Rocha CMR, Pereira DH, Morgon NH, Custodio R (2013) Assessment of G3(MP2)//B3 theory including a pseudopotential for molecules containing first-, second-, and third-row representative elements. J Chem Phys 139:1–13. https://doi.org/10.1063/1.4826519

    Article  CAS  Google Scholar 

  17. Pereira DH, Rocha CMR, Morgon NH, Custodio R (2015) G3(MP2)-CEP theory and applications for compounds containing atoms from representative first, second and third row elements of the periodic table. J Mol Model 21:204. https://doi.org/10.1007/s00894-015-2757-3

    Article  CAS  PubMed  Google Scholar 

  18. Silva CDS, Pereira DH, Custodio R (2016) G4CEP: a G4 theory modification by including pseudopotential for molecules containing first-, second- and third-row representative elements. J Chem Phys. https://doi.org/10.1063/1.4952427

    Article  PubMed  Google Scholar 

  19. Leal RC, Custodio R (2019) G3(MP2)//B3-SBK: a revision of a composite theory for calculations of thermochemical properties including some non-transition elements beyond the fourth period. Comput Theor Chem 1149:1–7. https://doi.org/10.1016/j.comptc.2018.12.016

    Article  CAS  Google Scholar 

  20. Silva CS, Custodio R (2018) Empirical corrections in the G3X and G3X(CCSD) theories combined with a compact effective pseudopotential. Theor Chem Acc. https://doi.org/10.1007/s00214-018-2206-3

    Article  Google Scholar 

  21. Silva CS, Custodio R (2015) Investigation of the pseudopotential Stuttgart/Dresden in the G3(MP2,CSSD,rel) theory for compounds containg transition elements. Rev Process Químicos 9:66–67. https://doi.org/10.19142/rpq.v9i18.258

    Article  Google Scholar 

  22. De Souza Silva C, Custodio R (2019) Assessment of pKa determination for monocarboxylic acids with an accurate theoretical composite method: G4CEP. J Phys Chem A. https://doi.org/10.1021/acs.jpca.9b05380

    Article  Google Scholar 

  23. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313. https://doi.org/10.1093/comjnl/7.4.308

    Article  Google Scholar 

  24. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  25. Lee C, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  26. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:034108. https://doi.org/10.1063/1.2148954

    Article  CAS  PubMed  Google Scholar 

  27. Boese AD, Martin JML (2004) Development of density functionals for thermochemical kinetics. J Chem Phys 121:3405–3416. https://doi.org/10.1063/1.1774975

    Article  CAS  PubMed  Google Scholar 

  28. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  29. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215. https://doi.org/10.1063/1.1564060

    Article  CAS  Google Scholar 

  30. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J Chem Phys 125:234109. https://doi.org/10.1063/1.2409292

    Article  CAS  PubMed  Google Scholar 

  31. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  32. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  33. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  34. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  35. Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806. https://doi.org/10.1063/1.462569

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2016) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford

    Google Scholar 

  37. Cobos CJ (2002) Heats of formation for AIH, A1OH, OA1H and OA1OH and their monocations. J Mol Struct THEOCHEM 581:17–29. https://doi.org/10.1016/S0166-1280(01)00735-7

    Article  CAS  Google Scholar 

  38. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213. https://doi.org/10.1007/s00894-007-0233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chinini GL, Custodio R (2019) Assessment of a composite method based on selected density functional theory methods and complete basis set extrapolation formulas. Int J Quantum Chem 119:1–12. https://doi.org/10.1002/qua.25892

    Article  CAS  Google Scholar 

  40. NIST Chemistry Webbook, http://webbook.nist.gov/chemistry

Download references

Acknowledgements

The author would like to acknowledge The National Center of High Performance Computing in Ceará (CENAPAD-UFC) for access to their computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleuton de Souza Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho & Francisco Bolivar Correto Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Silva, C. Heats of formation for aluminium compounds with EnAt1 and EnAt2. Theor Chem Acc 139, 135 (2020). https://doi.org/10.1007/s00214-020-02642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02642-8

Keywords

Navigation