Skip to main content
Log in

Effects on the aromaticity and on the biradicaloid nature of acenes by the inclusion of a cyclobutadiene linkage

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Biphenylene is a well-characterized compound that includes the union of both aromatic and antiaromatic units: benzene and cyclobutadiene, respectively. In this work, we extend this structural theme to acene analogues with a cyclobutadiene linkage in a central position. At the single reference domain, perturbation theory and DFT calculations were applied to characterize the electronic structure of the extended biphenylene systems, as well as of some acenes of interest for comparison. Multireference calculations were also used to provide more accurate information about the energetic stability and insights into the radical character. Using descriptors such as the singlet–triplet splitting, the number of effectively unpaired electrons, fractional occupation number weighted density analysis and aromaticity indexes, the different compounds have been compared with respect to biradicaloid character and chemical stability through structural and energetic approaches. The results indicate that biphenylene derivatives should possess similar reactivities and stabilities as their half acenes fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Stępień M, Gońka E, Żyła M, Sprutta N (2017) Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: synthetic Routes, Properties, and Applications. Chem Rev 117:3479–3716

    PubMed  Google Scholar 

  2. Salzmann I, Heimel G (2015) Toward a comprehensive understanding of molecular doping organic semiconductors (review). J Electron Spectros Relat Phenomena 204:208–222

    CAS  Google Scholar 

  3. Lin Y, Li Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41:4245

    CAS  PubMed  Google Scholar 

  4. Parkhurst RR, Swager TM (2012) Synthesis and optical properties of phenylene-containing oligoacenes. J Am Chem Soc 134:15351–15356

    CAS  PubMed  Google Scholar 

  5. Luppino SP, Swager TM (2017) Differentially substituted phenylene-containing oligoacene derivatives. Synlett 28:323–326

    CAS  Google Scholar 

  6. Jun Y (2015) Time-dependent density functional theory study of low-lying absorption and fluorescence band shapes for phenylene-containing oligoacenes. J Phys Chem A 119:12706–12714

    CAS  PubMed  Google Scholar 

  7. Ostroverkhova O (2016) Organic optoelectronic materials: mechanisms and applications. Chem Rev 116:13279–13412

    CAS  PubMed  Google Scholar 

  8. Lüder J, De Simone M, Totani R, Coreno M, Grazioli C, Sanyal B, Eriksson O, Brena B, Puglia C (2015) The electronic characterization of biphenylene-Experimental and theoretical insights from core and valence level spectroscopy. J Chem Phys 142:074305

    PubMed  Google Scholar 

  9. Hochstrasser RM (1961) The absorption spectrum of diphenylene in the near-ultraviolet. Can J Chem 39:765–772

    CAS  Google Scholar 

  10. Peradejordi F, Tétreau C, Lavalette D (1972) The triplet states of biphenylene. J Phys Chem 76:225–231

    CAS  Google Scholar 

  11. Nickel B, Hertzberg J (1989) Prompt fluorescence from biphenylene in liquid solution: absence of detectable S2- > S0 fluorescence and its implications, vibrational structure and polarization of S1- > S0 fluorescence, and orientational relaxation of molecule in S1. Chem Phys 132:219–234

    CAS  Google Scholar 

  12. Swiderek P, Michaud M, Hohlneicher G, Sanche L (1991) Electron-energy-loss spectroscopy of solid phenanthrene and biphenylene: search for the low-lying triplet states. Chem Phys Lett 178:289–294

    CAS  Google Scholar 

  13. Zimmermann R (1996) A theoretical study on the molecular structure of biphenylene in its first excited singlet and triplet states: quantum chemical calculations on the structural changes of an antiaromatic molecule upon excitation. J Mol Struct 377:35–46

    CAS  Google Scholar 

  14. Beck ME, Rebentisch R, Hohlneicher G, Fülscher MP, Serrano-Andrés L, Roos BO (1997) Vertical and adiabatic electronic excitations in biphenylene: a theoretical study. J Chem Phys 107:9464–9474

    CAS  Google Scholar 

  15. Martín N, Scott LT (2015) Challenges in aromaticity: 150 years after Kekulé’s benzene. Chem Soc Rev 44:6397–6400

    PubMed  Google Scholar 

  16. Cram DJ, Tanner ME, Thomas R (1991) The taming of cyclobutadiene. Angew Chemie Int Ed English 30:1024–1027

    Google Scholar 

  17. Fishtik I (2011) Biphenylene: stabilization or destabilization? J Phys Org Chem 24:263–266

    CAS  Google Scholar 

  18. Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X, Zhong D (2017) Graphene-like nanoribbons periodically embedded with four- and eight-membered rings. Nat Commun 8:14924

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hudspeth MA, Whitman BW, Barone V, Peralta JE (2010) Electronic properties of the biphenylene sheet and its one-dimensional derivatives. ACS Nano 4:4565–4570

    CAS  PubMed  Google Scholar 

  20. Wang J, Chu M, Fan JX, Lau TK, Ren AM, Lu X, Miao Q (2019) Crystal engineering of biphenylene-containing acenes for high-mobility organic semiconductors. J Am Chem Soc 141:3589–3596

    CAS  PubMed  Google Scholar 

  21. Möller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Google Scholar 

  22. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  23. Szalay PG, Müller T, Gidofalvi G, Lischka H, Shepard R (2012) Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. Chem Rev 112:108–181

    CAS  PubMed  Google Scholar 

  24. Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M (2018) Multireference approaches for excited states of molecules. Chem Rev 118:7293–7361

    CAS  PubMed  Google Scholar 

  25. Szalay PG, Bartlett RJ (1993) Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI. Chem Phys Lett 214:481–488

    CAS  Google Scholar 

  26. Dohnertt D, Kouteckj J (1980) occupation numbers of natural orbitals as a criterion for biradical character. Different Kinds. J Am Chem Soc 102(6):1789–1796

    Google Scholar 

  27. Staroverov VN, Davidson ER (2000) Distribution of effectively unpaired electrons. Chem Phys Lett 330:161–168

    CAS  Google Scholar 

  28. Grimme S, Hansen A (2015) A practicable real-space measure and visualization of static electron-correlation effects. Angew Chem Int Ed 54:12308–12313

    CAS  Google Scholar 

  29. Grimme S, Parac M (2003) Substantial errors from time- dependent density functional theory for the calculation of excited states of large π systems. Chem Phys Chem 3:292–295

    Google Scholar 

  30. Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudi F (2004) Oligoacenes: theoretical prediction of open-shell singlet diradical ground states. J Am Chem Soc 126:7416–7417

    CAS  PubMed  Google Scholar 

  31. Marian CM, Gilka N (2008) Performance of the density functional theory/multireference configuration interaction method on electronic excitation of extended π -systems. J Chem Theory Comput 4:1501–1515

    CAS  PubMed  Google Scholar 

  32. Plasser F, Pašalic̈ H, Gerzabek MH, Libisch F, Reiter R, Burgdörfer J, Müller T, Shepard R, Lischka H (2013) The multiradical character of one- and two-dimensional graphene nanoribbons. Angew Chem Int Ed 52:2581–2584

  33. Horn S, Plasser F, Müller T, Libisch F, Burgdörfer J, Lischka H (2014) A comparison of singlet and triplet states for one- and two-dimensional graphene nanoribbons using multireference theory. Theor Chem Acc 133:1511

    Google Scholar 

  34. Hachmann J, Dorando JJ, Avilés M, Chan GKL (2015) The radical character of the acenes: a density matrix renormalization group study. J Chem Phys 127:134309

    Google Scholar 

  35. Bettinger HF, Tönshoff C, Doerr M, Sanchez-Garcia E (2016) Electronically excited states of higher acenes up to nonacene: a density functional theory/multireference configuration interaction study. J Chem Theory Comput 12:305–312

    CAS  PubMed  Google Scholar 

  36. Yang Y, Davidson ER, Yang W (2016) Nature of ground and electronic excited states of higher acenes. Proc Natl Acad Sci 113:E5098–E5107

    CAS  PubMed  Google Scholar 

  37. Bettanin F, Ferrão LFA, Pinheiro M, Aquino AJA, Lischka H, Machado FBC, Nachtigallova D (2017) Singlet La and Lb Bands for N-Acenes (N = 2-7): a CASSCF/CASPT2 study. J Chem Theory Comput 13:4297–4306

    CAS  PubMed  Google Scholar 

  38. Plasser F, Mewes SA, Dreuw A, Gonzalez L (2017) Detailed wavefunction analysis for multireference methods: implementation in the Molcas program package and applications to tetracene. J Chem Theory Comput 13:5343–5353

    CAS  PubMed  Google Scholar 

  39. Weigend F, Häser M (1997) RI-MP2: first derivatives and global consistency. Theor Chem Acc 97:331–340

    CAS  Google Scholar 

  40. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    CAS  Google Scholar 

  41. Pinheiro M, Ferrão LFA, Bettanin F, Aquino AJA, Machado FBC, Lischka H (2017) How to efficiently tune the biradicaloid nature of acenes by chemical doping with boron and nitrogen. Phys Chem Chem Phys 19:19225–19233

    CAS  PubMed  Google Scholar 

  42. Pinheiro M, Das A, Aquino AJA, Lischka H, Machado FBC (2018) Interplay between aromaticity and radicaloid character in nitrogen-doped oligoacenes revealed by high-level multireference methods. J Phys Chem A 122:9464–9473

    CAS  PubMed  Google Scholar 

  43. Krygowski TM (1993) crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of π-electron systems. J Chem Inf Comput Sci 33:70–78

    CAS  Google Scholar 

  44. Krygowski TM, Cyrański MK (2001) Structural aspects of aromaticity. Chem Rev 101:1385–1419

    CAS  PubMed  Google Scholar 

  45. Machado FBC, Aquino AJA, Lischka H (2014) The diverse manifold of electronic states generated by a single carbon defect in a graphene sheet: multireference calculations using a pyrene defect model. Chem Phys Chem 15:3334–3341

    CAS  PubMed  Google Scholar 

  46. Machado FBC, Aquino AJA, Lischka H (2015) The electronic states of a double carbon vacancy defect in pyrene: a model study for graphene. Phys Chem Chem Phys 17:12778–12785

    CAS  PubMed  Google Scholar 

  47. Pinheiro M, Cardoso DVV, Aquino AJA, Machado FBC, Lischka H (2019) The characterization of electronic defect states of single and double carbon vacancies in graphene sheets using molecular density functional theory. Mol Phys 117:1519–1531

    CAS  Google Scholar 

  48. Ruedenberg K, Cheung LM, Elbert ST (1979) Optimization through combined use of natural orbitals and the Brillouin-Levy-Berthier Theorem. Int J Quantum Chem 16:1069–1101

    CAS  Google Scholar 

  49. Bunge A (1970) Electronic Wavefunctions for Atoms. III. Partition of Degenerate Spaces and Ground State of C. J Chem Phys 53:20–28

    CAS  Google Scholar 

  50. Langhoff SR, Davidson ER (1974) Configuration interaction calculations on the nitrogen molecule. Int J Quantum Chem 8:61–72

    CAS  Google Scholar 

  51. Hehre WJ, Ditchfield R, Pople JA (1972) Self — Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian — Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J Chem Phys 56:2257–2261

    CAS  Google Scholar 

  52. Head-Gordon M (2003) Characterizing unpaired electrons from the one-particle density matrix. Chem Phys Lett 372:508–511

    CAS  Google Scholar 

  53. Neese F (2012) The ORCA program system. WIREs Comp Mol Sci 2:73–78

    CAS  Google Scholar 

  54. Szalay PG, Müller T, Lischka H (2000) Excitation energies and transition moments by the multireference averaged quadratic coupled cluster (MR-AQCC) method. Phys Chem Chem Phys 2:2067–2073

    CAS  Google Scholar 

  55. Lischka H, Thomas M, Szalay G, Shavitt I, Pitzer R, Shepard R (2011) COLUMBUS — a program system for advanced multireference theory calculations. WIREs Comp Mol Sci 1:191–199

    CAS  Google Scholar 

  56. H. Lischka, R. Shepard, I. Shavitt, R. M. Pitzer, M. Dallos, Th. Müller, P. G. Szalay, F. B. Brown, R. Ahlrichs, H. J. Böhm, A. Chang, D. C. Comeau, R. Gdanitz, H. Dachsel, C. Ehrhardt, M. Ernzerhof, P. Höchtl, S. Irle, G. Kedziora, T. Kovar, V. Parasuk, M. J. M. Pepper, P. Scharf, H. Schiffer, M. Schindler, M. Schüler, M. Seth, E. A. Stahlberg, J.-G. Zhao, S. Yabushita, Z. Zhang, M. Barbatti, S. Matsika, M. Schuurmann, D. R. Yarkony, S. R. Brozell, E. V. Beck, and J.-P. Blaudeau, M. Ruckenbauer, B. Sellner, F. Plasser, J. J. Szymczak, R. F. K. Spada, A. Das. COLUMBUS, an ab initio electronic structure program, release 7.0 (2017)

  57. Schaub T, Radius U (2005) A convenient synthesis of biphenylene. Tetrahedron Lett 46:8195–8197

    CAS  Google Scholar 

  58. Wilcox CF, Talwar SS (1970) Two Syntheses of Dibenzo[b,h]biphenylene. J Chem Soc C 2162-2167

  59. Yamaguchi H, Baumann H (1988) Electronic Spectra of Dibenzo[b, h]biphenylene. J Chem Soc 84:417–422

    CAS  Google Scholar 

  60. Yu D, Stuyver T, Rong C, Alonso M, Lu T, De Proft F, Geerlings P, Liu S (2019) Global and local aromaticity of acenes from the information-theoretic approach in density functional reactivity theory. Phys Chem Chem Phys 21:18195–18210

    CAS  PubMed  Google Scholar 

  61. Solà M (2013) Forty years of Clar’s aromatic π-sextet rule. Front Chem 1:4–11

    Google Scholar 

  62. Shi X, Chi C (2016) Different Strategies for the Stabilization of Acenes and Acene Analogues. Chem Rec 16:1690–1700

    CAS  PubMed  Google Scholar 

  63. Pérez-Guardiola A, Sandoval-Salinas ME, Casanova D, San-Fabián E, Pérez-Jiménez AJ, Sancho-García JC (2018) The role of topology in organic molecules: origin and comparison of the radical character in linear and cyclic oligoacenes and related oligomers. Phys Chem Chem Phys 20:7112–7124

    PubMed  Google Scholar 

  64. Nieman R, Silva NJ, Aquino AJA, Haley MM, Lischka H (2020) Interplay of Biradicaloid Character and Singlet/Triplet Energy Splitting for cis-/trans-Diindenoacenes and Related Benzothiophene-Capped Oligomers as revealed by extended multireference calculations. J Org Chem 85:3664–3675

    CAS  PubMed  Google Scholar 

  65. Das A, Müller T, Plasser F, Lischka H (2016) Polyradical character of triangular non-kekulé structures, zethrenes, p-quinodimethane-linked bisphenalenyl, and the clar goblet in comparison: an extended multireference study. J Phys Chem A 120:1625–1636

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial assistance of the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under Projects Nos. 307136/2019-1, 404337/2016-3, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under Project Process No. 2019/25105-6, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) under Project CAPES/ITA No. 88882.161963/2014-01. FBCM, AJAA and HL are thankful to the FAPESP/Tianjin University SPRINT program (project No. 2017/50157-4) for travel support. The authors dedicate this work to Prof. Fernando Rei Ornellas for his excellence as an educator and supervisor, as well as for his leadership in the consolidation of the Computational Chemistry in Brazil.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans Lischka or Francisco B. C. Machado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

"Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justina Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho & Francisco Bolivar Correto Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1055 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milanez, B.D., Chagas, J.C.V., Pinheiro Jr, M. et al. Effects on the aromaticity and on the biradicaloid nature of acenes by the inclusion of a cyclobutadiene linkage. Theor Chem Acc 139, 113 (2020). https://doi.org/10.1007/s00214-020-02624-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02624-w

Keywords

Navigation