Skip to main content
Log in

Theoretical VCD response in the C-H stretching region of methyl α and β L-Fucopyranoside: a different behavior from monosaccharides

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Vibrational circular dichroism (VCD) band near 2840 cm−1 in the C-H stretching region is likely to play an important role as an alternative approach to extract stereochemical information namely, glycosidic O-linkages α or β for monosaccharides. Indeed, the experimental results attribute a positive sign for the S absolute configuration (α-anomers for D-sugars and β-anomers for L-sugars) and a negative sign for the R absolute configuration (β-anomers for D-sugar and α-anomers for L-sugar) at C-1 anomeric carbon site. This band was assigned as a symmetric stretching motion of glycosidic methyl group. The idea was to reproduce and explain these experimental results by using theoretical powerful methods and go farther, by studying how to extract stereochemical information from polysaccharides. The obtained theoretical VCD spectra for six monosaccharides were in good agreement with the experiment, except for methyl L-Fucopyranoside. Truly, for this particular sugar, two VCD bands with different signs were obtained for the S-configuration (β form) and assigned both to the symmetric stretching of the methyl glycosidic group. It becomes more interesting to explore this VCD response, to allow us, possibly to examine another way to differentiate between the alpha and the beta forms for this molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kabat EA (1956) The blood group substances. Academic Press, New’York

    Google Scholar 

  2. Heidelberger M (1956) Annual Rev Biochem 26:641

    Article  Google Scholar 

  3. Dudman WF, Wilkinson JF (1956) Biochem J 62:289

    Article  CAS  Google Scholar 

  4. Mori T (1953) Adv Carbohyd Chem 8:315

    CAS  Google Scholar 

  5. Peng P, Linseis M, Winter FR, Schmidt RR (2016) J Am Chem Soc 138:6002–6009

    Article  CAS  Google Scholar 

  6. Peng P, Linseis M, Winter FR, Schmidt RR (2015) J Am Chem Soc 137:12653–12659

    Article  CAS  Google Scholar 

  7. Gerayeli N, Tafazzoli M, Ghiasi M (2016) Phys Chem Res 4(4):643–654

    CAS  Google Scholar 

  8. Gubica T, Mazur M, Szeleszczuk L, Temeriusz A, Kanska M (2013) J Electroanal Chem 699:40–47

    Article  CAS  Google Scholar 

  9. Airoldi C, Merlo S, Sironi E, Nicotra F, Jimenez-Barbero J (2012) J Mater Sci Eng B 2(12):618–625

    CAS  Google Scholar 

  10. Matsushita Y, Murakawa T, Shimamura K, Ohyama T, Oishi M, Kurita N (2016) Mol Simul 42(3):242–256

    Article  CAS  Google Scholar 

  11. Taniguchi T, Monde K, Miura N, Nishimura SI (2004) Tetrahedron Lett 45:8451–8453

    Article  CAS  Google Scholar 

  12. Becke AD (1993) J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  13. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  14. Check CE, Faust TO, Bailey JM, Wright BJ, Gilbert TM, Sunderlin LS (2001) J Phys Chem A 105:8111

    Article  CAS  Google Scholar 

  15. Parlak C (2010) J Mol Struct 966:1

    Article  CAS  Google Scholar 

  16. Csonka GI, Elias K, Csizmadia IG (1996) Chem Phys Lett 257:49

    Article  CAS  Google Scholar 

  17. Csonka GI, Elias K, Csizmadia IG (1997) J Comput Chem 18:330–342

    Article  CAS  Google Scholar 

  18. Ouamerali O, Moussi S (2014) Proceedings of the international symposium on molecular spectroscopy, Urbana

  19. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision B.01. Gaussian, Inc., Wallingford

    Google Scholar 

  21. Dennington R, Keith TA, Millam JM (2016) GaussView, Version 6. Semichem Inc., Shawnee Mission. http://gaussian.com/citation/

  22. Cheeseman JR, Frisch MJ, Devlin FJ, Stephens PJ (1996) Chem Phys Lett 252:211–220

    Article  CAS  Google Scholar 

  23. Jamroz MH (2004–2010) Vibrational energy distribution analysis. VEDA 4, Warsaw

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ourida Ouamerali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussi, S., Ouamerali, O. Theoretical VCD response in the C-H stretching region of methyl α and β L-Fucopyranoside: a different behavior from monosaccharides. Theor Chem Acc 139, 109 (2020). https://doi.org/10.1007/s00214-020-02621-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02621-z

Keywords

Navigation