Skip to main content
Log in

Modeling of carbon nanospheres poly (9-vinylcarbazole) composites interaction: effect of diameter, distance and CNSs number

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density Functional Theory (DFT) calculations was performed to highlighted the effects of Carbon nanospheres (CNSs) on the properties of Poly (N-vinylcarbazole) (PVK) as well as the charge transfer between them. This study is based on the diameter and number of CNSs as well as the distance between PVK and CNSs. First, a charge transfer between the PVK and the CNSs is observed and the properties of the obtained composites depend strongly not only on the diameter of CNSs but also on the distance between PVK and CNSs. Theoretical absorption spectra and charge transfer of modeling composites configurations have shown a decrease and a redshift whenever the number of CNSs is increased. Non covalent interaction governed by Van Der Waals interaction have making evidence by NBO, AIM and RDG analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mojica M, Alonso JA, Méndez F (2013) Synthesis of fullerenes. J Phys Org Chem 26(7):526–539

    Article  CAS  Google Scholar 

  2. Harris PJF, Eduardo H, Boris IY (2004) Carbon nanotubes and related structures: new materials for the twenty-first century. Am J Phys 72:415. https://doi.org/10.1119/1.1645289

    Article  Google Scholar 

  3. Yanwu Z, Shanthi M, Weiwei C, Xuesong L, Ji WS, Jeffrey RP, Rodney SR (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(2010):3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  4. Peter JFH (2005) Crit Rev Solid State Mater Sci 30:235–253

    Article  Google Scholar 

  5. Zhang P, Qiao Z-A, Dai S (2015) Recent advances in carbon nanospheres: synthetic routes and applications. Chem Commun 51:9246–9256

    Article  CAS  Google Scholar 

  6. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  CAS  Google Scholar 

  7. Gou J, Minaie B, Wang B, Liang Z, Zhang C (2004) Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput Mater Sci 31(3–4):225–236

    Article  CAS  Google Scholar 

  8. Mingjun Y, Vasileios K, Michael Z (2005) Interactions between polymers and carbon nanotubes: a molecular dynamics study. J Phys Chem B 109:10009–10014

    Article  Google Scholar 

  9. Mbarek M, Ghnimi M, Abbassi F, Alimi K (2018) Novel carbon nanospheres and poly(9-vinylcarbazole) composites: synthesis, structural and photo-physical properties of films elaboration. J Mater Chem Phys 211:399–405

    Article  CAS  Google Scholar 

  10. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scal-mani G, Barone V, Mennucci B, Petersson GA et al. (2009) Gaussian09 Revision D.01. https://gaussian.com/g09citation/

  11. Venkataramanan NS, Suvitha A (2018) Nature of bonding and cooperativity in linear DMSO clusters: a DFT, AIM and NCI analysis. J Mol Graph Model 81:50–59

    Article  CAS  Google Scholar 

  12. Hernández-Paredes J, Carrillo-Torres RC (2017) Experimental and theoretical study on the molecular structure, covalent and noncovalent interactions of 2,4-dinitrodiphenylamine: X-ray diffraction and QTAIM approach. J Mol Struct 1141:53–63

    Article  Google Scholar 

  13. Ghallaa H, Govindarajanb M, Flakusc HT, Issaouia N, Yaghmourd SJ, Oujia B (2018) Molecular structure and vibrational spectroscopic studies on 2-furanacetic acid monomer and dimer. J Mol Graph Model 81:50–59

    Article  Google Scholar 

  14. Pickholz M, dos Santos MC (1999) Synth Met 101:528–529

    Article  CAS  Google Scholar 

  15. DiCesare N, Belletete M, Marrano C, Leclerc M, Durocher G (1998) Conformational analysis (ab Initio HF/3-21G*) and optical properties of symmetrically disubstituted terthiophenes. J Phys Chem A 102:5142–5149

    Article  CAS  Google Scholar 

  16. Mbarek M, Zaidi B, Alimi K (2012) Theoretical study of the alkoxyls groups effect on PPV-ether excited states, a relationship with femtosecond decay. Spectrochim Acta Part A 88:23–30

    Article  CAS  Google Scholar 

  17. Jia C, Wan Z, Zhang J, Li Z, Yao X, Shi Y (2012) Theoretical study of carbazole–triphenylamine-based dyes for dye-sensitized solar cells. Spectrochim Acta A 86:387–391

    Article  CAS  Google Scholar 

  18. Tai C-K, Chen Y-J, Chang H-W, Yeh P-L, Wang B-C (2011) DFT and TD-DFT investigations of metal-free dye sensitizers for solar cells: Effects of electron donors and π-conjugated linker. Comput Theor Chem 971:42–50

    Article  CAS  Google Scholar 

  19. Jungsuttiwong S, Tarsang R, Sudyoadsuk T, Promarak V, Khongpracha P, Namuangruk S (2013) Theoretical study on novel double donor-based dyes used in high efficient dye-sensitized solar cells: the application of TDDFT study to the electron injection process. Org Electron 14:711–722

    Article  CAS  Google Scholar 

  20. Yang J, Gordon KC, McQuillan AJ, Zidon Y, Shapira Y (2005) Photoexcited carriers in organic light emitting materials and blended films observed by surface photovoltage spectroscopy. Phys Rev B 71(15):155209

    Article  Google Scholar 

  21. Yosuke K, Jeffrey CG (2007) Nano Lett 7:1969–1972

    Google Scholar 

  22. Rad AS, Nasimi N, Jafari M, Shabestari DS, Gerami E (2015) Ab-initio study of interaction of some atmospheric gases (SO2, NH3, H2O, CO, CH4 and CO2) with polypyrrole (3PPy) gas sensor: DFT calculations. Sens Actuators B 1(220):641–651

    Article  Google Scholar 

  23. Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111(22):7851–7861

    Article  CAS  Google Scholar 

  24. Mingjun Y, Vasileios K, Michael Z (2005) Interactions between polymers and carbon nanotubes: a molecular dynamics study. J Chem Phys B 109:10009–10014

    Article  Google Scholar 

  25. Saha L-C, Mian S-A, Jang JK (2012) Molecular dynamics simulation study on the carbon nanotubeinteracting with a polymer. Bull Korean Chem Soc 33:893–896

    Article  CAS  Google Scholar 

  26. Zhou CH, Sun ZH, Zhang JC, Fan G (2017) The effect of C60 on the optical absorption properties of HPPH photosensitizer. IOP Conf Ser 213(1):012026

    Google Scholar 

  27. Zandler ME, D’Souza F (2006) The remarkable ability of B3LYP/3-21G (*) calculations to describe geometry, spectral and electrochemical properties of molecular and supramolecular porphyrin–fullerene conjugates. C R Chim 9(7–8):960–981

    Article  CAS  Google Scholar 

  28. Tamura H, Burghardt I, Tsukada M (2011) Exciton dissociation at thiophene/fullerene interfaces: the electronic structures and quantum dynamics. J Phys Chem C 115(20):10205–10210

    Article  CAS  Google Scholar 

  29. Marchiori CFN, Koehler M (2010) Dipole assisted exciton dissociation at conjugated polymer/fullerene photovoltaic interfaces: a molecular study using density functional theory calculations. Synth Met 160:643–650

    Article  CAS  Google Scholar 

  30. Marchiori CFN, Koehler M (2014) J Phys D 47:215104

    Article  Google Scholar 

  31. Rathore P, Negi CM, Verma AS, Singh A, Chauhan G, Inigo AR, Gupta SK (2017) Investigation of the optical and electrical characteristics of solution-processed poly (3 hexylthiophene)(P3HT): multiwall carbon nanotube (MWCNT) composite-based devices. Mater Res Exp 4(8):085905

    Article  Google Scholar 

  32. Bakour A, Geschier F, Baitoul M, Mbarek M, El-Hadj K, Duvail JL, Lefrant S, Faulques E, Massuyeau F, Wery-Venturini J (2014) Effects of single-walled carbon nanotubes on the optical and photo-conductive properties of their composite films with regio-regular poly (3-hexylthiophene). Mater Chem Phys 143(3):1102–1110

    Article  CAS  Google Scholar 

  33. Sacarescu L, Kostromin S, Bronnikov S (2015) Synthesis and properties of polydiphenylsilane/fullerene C60 nanocomposites. Mater Chem Phys 149–150:430–436

    Article  Google Scholar 

  34. Shen Y, Zhang J, Feng Gu, Huang P, Xia Y (2004) Intermolecular and intramolecular charge transfer in polymethylphenylsilane/C60 films. J Phys D 37:2579–2582

    Article  CAS  Google Scholar 

  35. Nguyen TT, Nguyen SU, Phuong DT, Nguyen DC, Mai AT (2011) Dispersion of denatured carbon nanotubes by using a dimethylformamide solution. Adv Natl Sci 2(3):035015

    Google Scholar 

  36. Shrotriya V, Ouyang J, Tseng RJ, Li G, Yang Y (2005) Absorption spectra modification in poly (3-hexylthiophene): methanofullerene blend thin fims. Chem Phys Lett 411:138–143

    Article  CAS  Google Scholar 

  37. Kimakys E, Alexandou I, Amaratunga GAJ (2002) single-walled carbon nanotube polymer-composites: electrical, optical and structural investigation, synthetic. Metals 127:59–62

    Google Scholar 

  38. Arranz-Andrés J, Blau WJ (2008) Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices. Carbon 46:2067–2075

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the deanship of Scientific Research at Princess Nourah Bint AbdulRahman University through the Fast-track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mbarek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghnimi, M., Mbarek, M., Almoneef, M.M. et al. Modeling of carbon nanospheres poly (9-vinylcarbazole) composites interaction: effect of diameter, distance and CNSs number. Theor Chem Acc 139, 104 (2020). https://doi.org/10.1007/s00214-020-02619-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02619-7

Keywords

Navigation