Skip to main content
Log in

Mechanism of hydrogen generation on stable Mo-edge of 2H-MoS2 in water from density functional theory

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this paper, the stable structure of Mo-edge of 2H-MoS2 in water and the H2 evolution mechanism at Mo-edge in 2H-Mo7S17 cluster were investigated by the B3LYP method of the density functional theory. The calculations suggested that the stable structure of the Mo-edge in gas and water was different. The Mo-edge with the upright S bonded by one Mo atom was more stable in water while the S atom of Mo-edge was bonded by two Mo atoms to generate a stable Mo-edge in gas. The adsorption energy of H on S was higher than that on Mo at Mo-edge; as a result, the hydrogen evolution reactions on S and Mo were limited by the Heyrovsky and Volmer step, respectively. In hydrogen evolution reaction, the Volmer reaction occurs on S to produce Mo7S17HS, leading to the aggregation of electron on Mo and thus decreasing the barriers for H2 evolution reaction on Mo. Subsequently, the Mo in Mo7S17HS severing as active sites efficiently catalyzed hydrogen evolution reaction through the Volmer–Heyrovsky mechanism, in which the Volmer reaction was identified as the rate-determining step with a potential barrier of 17.9 kcal/mol, being close to the experimental value of 19.9 kcal/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Walter MG, Warren EL, McKone JR et al (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  CAS  PubMed  Google Scholar 

  2. Gratzal M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  3. Huang C, Wang X, Wang D et al (2019) Atomic pillar effect in PdxNbS2 to boost basal plane activity for stable hydrogen evolution. Chem Mater 31:4726–4731

    Article  CAS  Google Scholar 

  4. Kong C, Min S, Lu G (2014) Robust Pt-Sn alloy decorated graphene nanohybrid cocatalyst for photocatalytic hydrogen evolution. Chem Commun 50:9281–9283

    Article  CAS  Google Scholar 

  5. Zhang G, Lan ZA, Lin L et al (2016) Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem Sci 7:3062–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He J, Wang J, Chen Y et al (2014) A dye-sensitized Pt@UiO-66(Zr) metal-organic framework for visible-light photocatalytic hydrogen production. Chem Commun 50:7063–7066

    Article  CAS  Google Scholar 

  7. Wang N, Wang J, Hu J et al (2018) Design of palladium-doped g-C3N4 for enhanced photocatalytic activity toward hydrogen evolution reaction. ACS Appl Energy Mater 1:2866–2873

    Article  CAS  Google Scholar 

  8. Ganguly P, Harb M, Cao Z et al (2019) 2D nanomaterials for photocatalytic hydrogen production. ACS Energy Lett 47:1687–1709

    Article  CAS  Google Scholar 

  9. Liu T, Liu X, Bhattacharya S et al (2019) Plasma-induced fabrication and straining of MoS2 films for the hydrogen evolution reaction. ACS Appl Energy Mater 2:5162–5170

    Article  CAS  Google Scholar 

  10. Zong X, Na Y, Wen F et al (2009) Visible light driven H2 production in molecular systems employing colloidal MoS2 nanoparticles as catalyst. Chem Commun 14:4536–4538

    Article  CAS  Google Scholar 

  11. Hinnemann B, Moses PG, Bonde J et al (2005) Biominmeic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309

    Article  CAS  PubMed  Google Scholar 

  12. Merki D, Hu X (2011) Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ Sci 4:3878–3888

    Article  CAS  Google Scholar 

  13. Benck JD, Hellstern TR, Kibsgaard J et al (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal 4:3957–3971

    Article  CAS  Google Scholar 

  14. Vesborg PCK, Seger B, Chorkendorff I (2015) Recent development in hydrogen evolution reaction catalysts and their practical implementation. J Phys Chem Lett 6:951–957

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Deng J, Wang X et al (2018) Small stoichiometric (MoS2)n clusters with the 1T phase. Phys Chem Chem Phys 20:6365–6373

    Article  CAS  PubMed  Google Scholar 

  16. Jaramillo TF, Jorgensen KP, Bonde J et al (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalyst. Science 317:100–102

    Article  CAS  PubMed  Google Scholar 

  17. Huang Y, Nielsen RJ, Goddard WA et al (2015) The reaction mechanism with free energy barrier for electrochemical dihydrogen evolution on MoS2. J Am Chem Soc 137:6692–6698

    Article  CAS  PubMed  Google Scholar 

  18. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  19. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  CAS  PubMed  Google Scholar 

  20. Lu T (2017) Multiwfn, version 3.4.1, a multifunctional wavefunction analyzer. http://multiwfn.codeplex.com

  21. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comp Chem 11:361–373

    Article  CAS  Google Scholar 

  22. Ganji MD, Hosseini-khah SM, Amini-tabar Z (2015) Theoretical insight into hydrogen adsorption onto graphene: a first-principles B3LYP-D3 study. Phys Chem Chem Phys 17:2504–2511

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision E.01, Gaussian Inc., Wallingford CT

  24. Shama S, Groves MN, Fennell J et al (2014) Carboxyl group enhanced CO tolerant GO supported Pt catalysts: DFT and electrochemical analysis. Chem Mater 26:6142–6151

    Article  CAS  Google Scholar 

  25. Fernando A, Weerawardene KLDM, Karimova NV et al (2015) Quantum mechanical studies of large metal, metal oxide, and metal chalcogenide nanoparticles and clusters. Chem Rev 115:6112–6216

    Article  CAS  PubMed  Google Scholar 

  26. Kong C, Han Y, Hou L et al (2017) Theoretical research on the H2 generation mechanism on Pt6, Pt5Sn5 and Pt3Sn6 clusters by density functional theory. Int J Hydrog Energy 42:16157–16169

    Article  CAS  Google Scholar 

  27. Raybaud P, Hafner J, Kresse G et al (2000) Ab initio study of the H2–H2S/MoS2 gas-solid interface: the nature of the catalytically active sites. J Catal 189:129–146

    Article  CAS  Google Scholar 

  28. Nørskov JK, Bligaard T, Logadottir A et al (2005) Trends in the exchange current for hydrogen evolution. J Electronchem Soc 152:J23–J26

    Article  CAS  Google Scholar 

  29. Deng J, Ren P, Deng D et al (2015) Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew Chem Int Ed 54:2100–2104

    Article  CAS  Google Scholar 

  30. Gao M, Liang J, Zheng Y et al (2015) An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat Commun 6:5982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li H, Tsai C, Koh AL et al (2016) Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater 15:48–53

    Article  CAS  PubMed  Google Scholar 

  32. Tang Q, Jiang D (2016) Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal 6:4953–4961

    Article  CAS  Google Scholar 

  33. Kim KY, Lee J, Kang S et al (2018) Role of hyper-reduced states in hydrogen evolution reaction at sulfur vacancy in MoS2. ACS Catal 8:4508–4515

    Article  CAS  Google Scholar 

  34. Kong D, Wang H, Cha JJ et al (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 13:1341–1347

    Article  CAS  PubMed  Google Scholar 

  35. Lukowski MA, Daniel AS, Meng F et al (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277

    Article  CAS  PubMed  Google Scholar 

  36. Zhu J, Wang ZC, Dai H et al (2019) Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat Commun 10:1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Doctor Foundation of Long-dong University (XYBY1904), the Key Discipline of Gansu Province, the Innovation Team Project of Gansu University (2018C-22) and the Hexi University Principle Fund of Scientific Innovation and Application (No. XZZD2018004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Kong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, YX., Kong, C. & Yan, PJ. Mechanism of hydrogen generation on stable Mo-edge of 2H-MoS2 in water from density functional theory. Theor Chem Acc 139, 98 (2020). https://doi.org/10.1007/s00214-020-02614-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02614-y

Keywords

Navigation