Skip to main content
Log in

High-temperature rate constants for CH3OCOH + OH reactions: the effects of multiple structures and paths

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Rate constants for hydrogen abstraction reactions of methyl formate by hydroxyl radical are computed with the one-well (1W) and multipath (MP) variational transition state theory with small-curvature tunneling at the temperature in the range of 800–1500 K. All possible conformations of reactants and transition states reached by internal rotations were optimized with M05-2X/maug-cc-pVTZ. Harmonic vibrational frequencies were performed to confirm the nature of the stationary points. Thirteen conformations of the transition states (including the mirror images) were found at this level of theory and separated into two conformational reaction channels (CRCs). Individual energy paths of each CRC were built and the thermal rate constants obtained with 1W and MP formalism. The 1W-CVT/SCT thermal rate constants underestimate the experimental results and indicate that the hydrogen abstraction reaction by the formyl group is predominant. When the multiple structures of reactants and transition states are taken into account, the values of the thermal rate constants shown excellent concordance with the experimental measurements. In addition, the MP-CVT/SCT product branching ratios are in good agreement with the experimental kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kohse-Höinghaus K, Osswald P, Cool TA, Kasper T, Hansen N, Qi F, Westbrook CK, Westmoreland PR (2010) Angew. Chem. Int. Ed. 49:3572

    Article  Google Scholar 

  2. Westbrook CK, Pitz WJ, Westmoreland PR, Dryer FL, Chaos M, Osswald P, Kohse-Höinghaus K, Cool T, Wang J, Yang B, Hansen N, Kasper T (2009) Proc. Combust. Inst. 32:221

    Article  CAS  Google Scholar 

  3. Dooley S, Burke MP, Chaos M, Stein Y, Dryer FL, Zhukov VP, Finch O, Simmie JM, Curran HJ (2010) Int. J. Quantum Chem. 42:527

    CAS  Google Scholar 

  4. Roberto-Neto O, Alves TV (2018) Chem. Phys. Lett. 711:132

    Article  CAS  Google Scholar 

  5. de Carvalho EFV, Vicentini GD, Alves TV, Roberto-Neto O (2020) J. Comput. Chem. 41:231

    Article  PubMed  Google Scholar 

  6. de Carvalho EFV, Roberto-Neto O (2018) J. Comput. Chem. 39:1424

    Article  PubMed  Google Scholar 

  7. Calvé SL, Bras GL, Mellouki A (1997) J. Phys. Chem. A 101:5489

    Article  Google Scholar 

  8. Good DA, Hanson J, Francisco JS (1999) J. Phys. Chem. A 103:10893

    Article  CAS  Google Scholar 

  9. Szilágyi I, Dóbé S, Bérces T, Márta F, Viskolcz B, Phys Z (2004) Chem. 218:479

    Google Scholar 

  10. Lam KY, Davidson DF, Hanson RK (2012) J. Phys. Chem. A 116:12229

    Article  CAS  PubMed  Google Scholar 

  11. Tan T, Pavone M, Krisiloff DB, Carter EA (2012) J. Phys. Chem. A 116:8431

    Article  CAS  PubMed  Google Scholar 

  12. Wu J, Ning H, Ma L, Ren W (2018) Phys. Chem. Chem. Phys. 20:26190

    Article  CAS  PubMed  Google Scholar 

  13. Meana-Pañeda R, Fernández-Ramos A (2012) J. Am. Chem. Soc. 134:346

    Article  PubMed  Google Scholar 

  14. Yu T, Zheng J, Truhlar DG (2012) J. Phys. Chem. A 116:297

    Article  CAS  PubMed  Google Scholar 

  15. Simón-Carballido L, Alves TV, Dybala-Defratyka A, Fernández-Ramos A (2016) J. Phys. Chem. B 120:1911

    Article  PubMed  Google Scholar 

  16. Ferro-Costas D, Martínez-Núñez E, Rodríguez-Otero J, Cabaleiro-Lago E, Estévez CM, Fernández B, Fernández-Ramos A, Vázquez SA (2018) J. Phys. Chem. A 122:4790

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Y, Schultz NE, Truhlar DG (2006) J. Chem. Theory Comp. 2:364

    Article  Google Scholar 

  18. Zhao Y, Truhlar DG (2008) Theor. Chem. Acc. 120:215

    Article  CAS  Google Scholar 

  19. Zhao Y, Truhlar DG (2004) J. Phys. Chem. A 108:6908

    Article  CAS  Google Scholar 

  20. Zhao Y, Lynch BJ, Truhlar DG (2004) J. Phys. Chem. A 108:2715

    Article  CAS  Google Scholar 

  21. Becke AD (1988) Phys. Rev. A 38:3098

    Article  CAS  Google Scholar 

  22. Hehre WJ, Ditchfield R, Pople JA (1972) J. Chem. Phys. 56:2257

    Article  CAS  Google Scholar 

  23. Lynch BJ, Zhao Y, Truhlar DG (2003) J. Phys. Chem. A 107:1384

    Article  CAS  Google Scholar 

  24. Papajak E, Leverentz HR, Zheng J, Truhlar DG (2009) J. Chem. Theory Comput. 5:1197

    Article  CAS  PubMed  Google Scholar 

  25. Peterson KA, Woon DE, Dunning TH (1994) J. Chem. Phys. 100:7410

    Article  CAS  Google Scholar 

  26. Hill JG, Peterson KA (2010) Phys. Chem. Chem. Phys. 12:10460

    Article  CAS  PubMed  Google Scholar 

  27. Weigend F (2002) Phys. Chem. Chem. Phys. 4:4285

    Article  CAS  Google Scholar 

  28. Weigend F, Köhn A, Hättig C (2002) J. Chem. Phys. 116:3175

    Article  CAS  Google Scholar 

  29. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Györffy W, Kats D, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, O’Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M (2004) MOLPRO, version 2010.1, a package of ab initio programs (2010)

  30. Martin JML (1996) Chem. Phys. Lett. 259:669

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A. 02. Gaussian Inc., Wallingford, CT

    Google Scholar 

  32. Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) J. Chem. Theory Comput. 6:2872

    Article  CAS  PubMed  Google Scholar 

  33. Page M, J.W.M. Jr. (1988) J. Chem. Phys. 88:922

  34. Chuang YY, Truhlar DG (1998) J. Phys. Chem. A 102:242

    Article  CAS  Google Scholar 

  35. Lu DH, Truong TN, Melissas VS, Lynch GC, Liu YP, Garrett BC, Steckler R, Isaacson AD, Rai SN, Hancock GC, Lauderdale J, Joseph T, Truhlar DG (1992) Comput. Phys. Comm. 71(3):235

    Article  CAS  Google Scholar 

  36. Hu WP, Liu YP, Truhlar DG (1994) J. Chem. Soc., Faraday Trans. 90:1715

    Article  CAS  Google Scholar 

  37. Ferro-Costas D, Truhlar D, Fernández-Ramos A (2019) Pilgrim version 1.0 (University of Minneapolis, Minnesota, MN, and Universidade de Santiago de Compostela, Spain). https://github.com/daferro/Pilgrim. Accessed May 2019

  38. Martin JM, Taylor PR (1996) Chem. Phys. Lett. 248:336

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico of Brazil—CNPq (Grant No. 422647/2016-0). I. A. L. acknowledges FAPESB for a graduate fellowship, and M. O. P. is thankful to CNPq for a graduate research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Vinicius Alves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho & Francisco Bolivar Correto Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lins, I.A., Passos, M.O. & Alves, T.V. High-temperature rate constants for CH3OCOH + OH reactions: the effects of multiple structures and paths. Theor Chem Acc 139, 85 (2020). https://doi.org/10.1007/s00214-020-02599-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02599-8

Keywords

Navigation