Skip to main content
Log in

Quantum mechanics meets scaling theory near the critical point

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The critical point is believed to be not amenable to quantum mechanical calculations because the correlation length goes to infinity, the density is largely inhomogeneous and some thermodynamic properties diverge. For these reasons, until very recently all theoretical information of the critical point has been obtained by statistical physics and nothing was known about the electronic structure. Employing a sequential quantum mechanical/molecular mechanical (S-QM/MM) approach for a nonpolar atomic fluid, we study the behavior of the dielectric constant at different temperatures, ranging from dense fluid to supercritical condition. Our primary focus lies on the vicinity of the critical point. By using quantum mechanical calculations with thermodynamic condition, we perfectly reproduce the behavior found previously for classical monoatomic fluid by using scaling functions and renormalization theory that in the vicinity of the critical point the dielectric constant shares the critical behavior of the internal energy and, although the dielectric constant remains finite, its variation with temperature diverges. This perfect agreement leads credence to multiscale QM/MM methods and suggests the possibility of obtaining theoretical information about the electronic structure of a fluid near the critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fisher ME (1967) Rep Prog Phys 30:615–730

    Article  CAS  Google Scholar 

  2. Fisher ME (1982) In: Hahne FJW (ed) Critical phenomena. Lecture notes in physics, vol 186. Springer, Berlin, pp 1–139

    Google Scholar 

  3. Domb C, Green MS (eds) (1972–1976) Phase transitions and critical phenomena, vol 1–6. Academic Press, London

  4. Stanley HE (1999) Rev Mod Phys 71:S358–S366

    Article  CAS  Google Scholar 

  5. Goldenfeld N (1992) Lectures on phase transitions and the renormalization group. Addison-Wesley, Boston

    Google Scholar 

  6. Coutinho K, Canuto S (2000) J Chem Phys 113:9132–9139

    Article  CAS  Google Scholar 

  7. Coutinho K, Rivelino R, Georg HC, Canuto S (2008) In: Canuto S (ed) Solvation effects on molecules and biomolecules. Computational methods and applications. Springer, Berlin, pp 159–189

    Chapter  Google Scholar 

  8. Hidalgo M, Coutinho K, Canuto S (2015) Phys Rev E 91:032115

    Article  Google Scholar 

  9. Teague RK, Pings CJ (1968) J Chem Phys 48:4973

    Article  CAS  Google Scholar 

  10. Bertrand CE, Sengers JV, Anisimov MA (2011) J Phys Chem B 115:14000–14007

    Article  CAS  PubMed  Google Scholar 

  11. Stell G, Høye JS (1974) Phys Rev Lett 33:1268–1271

    Article  Google Scholar 

  12. Sengers JV, Bedeaux D, Mazur P, Greer SC (1980) Phys A Stat Mech Appl 104:573–594

    Article  Google Scholar 

  13. Doiron T, Meyer H (1978) Phys Rev B 17:2141–2146

    Article  CAS  Google Scholar 

  14. Chan MHW (1980) Phys Rev B 21:1187–1193

    Article  CAS  Google Scholar 

  15. Thijsse BJ (1981) J Chem Phys 74:4678–4692

    Article  CAS  Google Scholar 

  16. Warshel A, Levitt M (1976) J Mol Biol 103:227–249

    Article  CAS  PubMed  Google Scholar 

  17. Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700–733

    Article  CAS  Google Scholar 

  18. Coutinho K, Canuto S (2010) DICE, a Monte Carlo program for molecular liquid simulation, version 2.9. University of São Paulo, São Paulo

    Google Scholar 

  19. Cezar HM, Canuto S, Coutinho K (2019) Int J Quantum Chem 119:e25688

    Article  Google Scholar 

  20. Maitland GC, Smith EB (1971) Mol Phys 22:861–868

    Article  CAS  Google Scholar 

  21. Becke A (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  CAS  Google Scholar 

  23. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  24. Johnston DR, Oudemans GJ, Cole RH (1960) J Chem Phys 33:1310–1317

    Article  CAS  Google Scholar 

  25. Amey RL, Cole RH (1964) J Chem Phys 40:146–148

    Article  CAS  Google Scholar 

  26. Larsen SY, Mountain RD, Zwanzig R (1965) J Chem Phys 42:2187–2190

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, (2009) Gaussian 09 Revision D.01. Gaussian Inc, Wallingford, CT

    Google Scholar 

  28. Mikolaj PG, Pings CJ (1967) J Chem Phys 46:1401–1411

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CAPES for the BioMol project 23038.004630/2014-35; the National Institute of Science and Technology of Complex Fluids (INCT-FCx) with the CNPq Grant 141260/2017-3 and FAPESP Grant 2014/50983-3; TNR thanks a FAPESP Grant 2015/14189-3. KC and SC acknowledge CNPq for continuous support. This work is dedicated to Prof. Fernando R. Ornellas on the occasion of his 70th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvio Canuto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho & Francisco Bolivar Correto Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bistafa, C., Ramos, T.N., Coutinho, K. et al. Quantum mechanics meets scaling theory near the critical point. Theor Chem Acc 139, 80 (2020). https://doi.org/10.1007/s00214-020-02596-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02596-x

Keywords

Navigation