Skip to main content
Log in

Theoretical study of the adsorption of diphenylalanine on pristine graphene

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We perform density functional theory calculations to investigate the adsorption properties of diphenylalanine on pristine graphene. We use PBE exchange–correlation functional with corrections for van der Waals interactions (PBE-D3) during the calculations. The formation of the diphenylalanine/graphene complexes is favourable energetically in all cases. The well-known pristine graphene’s semi-metallic nature is modified when the diphenylalanine molecule adsorbs. One can observe, through the analysis of the adsorption energy, that the strongest interaction is the one in which diphenylalanine adsorbs on graphene through offset aromatic interactions. The results obtained here can provide useful guidance in designing novel hybrid organic/inorganic materials for many biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183

    Article  CAS  PubMed  Google Scholar 

  2. Katoch J, Kim S, Kuang Z, Farmer B, Naik R, Tatulian S, Ishigami M (2012) Structure of a peptide adsorbed on graphene and graphite. Nano Lett 12:2342

    Article  CAS  PubMed  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666

    Article  CAS  PubMed  Google Scholar 

  4. Cai M, Thorpe D, Adamson DH, Schniepp HC (2012) Methods of graphite exfoliation. J Mater Chem 22:24992

    Article  CAS  Google Scholar 

  5. Seah CM, Chai SP, Mohamed A (2014) Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 70:1

    Article  CAS  Google Scholar 

  6. Yu X, Hwang C, Jozwiak C, Köhl A, Schmid A, Lanzara A (2011) New synthesis method for the growth of epitaxial graphene. J Electron Spectrosc Relat Phenom 184:100

    Article  CAS  Google Scholar 

  7. Li D, Zhang W, Yu X, Wang Z, Su Z, Wei G (2016) When biomolecules meet graphene: from molecular level interactions to material design and applications. Nanoscale 8:19491

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Zhang Y, Wu A, Wei G (2017) Designed graphene-peptide nanocomposites for biosensor applications: A review. Anal Chim Acta 985:24

    Article  CAS  PubMed  Google Scholar 

  9. Qu Y, Ma M, Wang Z, Zhan G, Li B, Wang X, Fang H, Zhang H, Li C (2013) Sensitive amperometric biosensor for phenolic compounds based on graphene–silk peptide/tyrosinase composite nanointerface. Biosens Bioelectron 44:85

    Article  CAS  PubMed  Google Scholar 

  10. Guo CG, Ng SR, Khoo SY, Zheng X, Chen P, Chang Li CM (2012) RGD-peptide functionalized graphene biomimetic live-cell sensor for real-time detection of nitric oxide molecules. ACS Nano 6:6944

    Article  CAS  PubMed  Google Scholar 

  11. No YH, Kim NH, Gnapareddy B, Choi B, Kim YT, Dugasani SR, Lee OS, Kim KH, Ko YS, Lee S, Lee SW, Park SH, Eom K, Kim YH (2017) Nature-inspired construction of two-dimensionally self-assembled peptide on pristine graphene. J Phys Chem Lett 8:3734

    Article  CAS  PubMed  Google Scholar 

  12. Guo YN, Lu X, Weng J, Leng Y (2013) Density functional theory study of the interaction of arginine-glycine-aspartic acid with graphene, defective graphene, and graphene oxide. J Phys Chem C 117:5708

    Article  CAS  Google Scholar 

  13. De Leo F, Magistrato A, Bonifazi D (2015) Interfacing proteins with graphitic nanomaterials: from spontaneous attraction to tailored assemblies. Chem Soc Rev 44(19):6916

    Article  PubMed  Google Scholar 

  14. Reches M, Gazit EE (2003) Science 300:625

    Article  CAS  PubMed  Google Scholar 

  15. Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39:1877

    Article  CAS  PubMed  Google Scholar 

  16. Tomba G, Lingenfelder M, Costantini G, Kern K, Klappenberger F, Barth JV, Ciacchi LC, De Vita A (2007) Structure and energetics of diphenylalanine self-assembling on Cu(110). J Phys Chem A 111(49):12740

    Article  CAS  PubMed  Google Scholar 

  17. Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Corso AD, de Gironcoli S, Delugas P, Jr RAD, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko HY, Kokalj A, Kkbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen HV, de-la Roza AO, Paulatto L, Ponc S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S (2017) Advanced capabilities for materials modelling with quantum espresso. J Phys Condensed Matter 29:465901

  18. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  19. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  CAS  Google Scholar 

  20. Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  21. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-d) for the 94 elements h-pu. J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  22. Rodríguez S, Albanesi EA (2019) Electronic transport in a graphene single layer: application in amino acid sensing. Phys Chem Chem Phys 21:597

    Article  PubMed  Google Scholar 

  23. Rajesh C, Majumder C, Mizuseki H, Kawazoe Y (2009) A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube. J Chem Phys 130(12):124911

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support of the Brazilian National Council for Scientific and Technological Development (CNPq) Brazilian agency under project Universal (grant 427527/2016-3) is gratefully acknowledged. We thank LCC/UNIFESSPA for the computation facilities made available for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Andrade-Filho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Alves, D.A., Camara, M.V.S., Chaves-Neto, A.M.J. et al. Theoretical study of the adsorption of diphenylalanine on pristine graphene. Theor Chem Acc 139, 83 (2020). https://doi.org/10.1007/s00214-020-02594-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02594-z

Keywords

Navigation